Способ получения электрода для производства порошковых материалов из титановых сплавов для аддитивных и гранульных технологий

Изобретение относится к порошковой металлургии, в частности к получению электрода для производства порошковых материалов из титановых сплавов, которые могут использоваться для аддитивных и гранульных технологий. Для изготовления электрода используют отходы литейного производства титановых сплавов, предварительно отсортированные по требуемому химическому составу, которые очищают от литой корки в дробеструйной камере и обрабатывают в галтовочном аппарате в течение 30 мин для очистки от окисных загрязнений. Затем осуществляют выплавку в вакуумной гарнисажной печи и разливку в изложницы с формированием электрода. Обеспечивается получение порошков сферической формы с размером частиц, соответствующим требованиям аддитивных и гранульных технологий, и низким содержанием кислорода, водорода и азота, экологическая чистота производства и высокая производительность.

 

Изобретение относится к порошковой металлургии, а именно к получению электрода для производства порошковых материалов из титановых сплавов, для аддитивных и гранульных технологий, нанесения покрытий и изготовления различных изделий методом 3D-печати.

Расходные материалы для производства порошковых материалов для отечественных производителей является серьезной проблемой. В связи с неразвитостью российского рынка металлопорошковые композиции для аддитивных машин в основном приходится закупать за рубежом. Оптовая цена на внешнем рынке порошковых материалов предельно высокая и при этом существуют ограничения при оформлении заказа до 10 кг порошков. Для российских потребителей стоимость 1 кг порошков обходится в 2-3 раза дороже, чем для пользователей страны производителя. В среднем цена порошковых материалов из сплава Ti-6Al-4V за 1 кг достигает 600-800∈.

В связи с этим предложения по способу получения исходных заготовок электродов с требуемым химическим составом для производства порошков является актуальным.

Известны способы получения порошков титана при использовании в качестве исходных материалов титановой губки по патентам RU 2301723, B22F 9/16 от 27.06.2007 г. и RU 2240896, B22F 9/16 от 27.11.2004 г.

Недостатками указанных способов является гидрирование титановой губки, ее измельчение, термическое разложение образовавшегося спека в вакууме. Использование титановой губки и гидрирования повышает себестоимость и ограничивает область применения способов, при этом более 15% полученного порошка размером менее 10 мкм.

Известен способ получения титанового порошка методами размола в аттриторе титановой губки с использованием хлористого кальция в качестве защитной среды по патенту RU 2178341 C2, МПК B22F 9/04.

Недостатком данного способа, как и предыдущих, является использование титановой губки и ее окисление в процессе производства порошков.

В качестве материалов для изготовления порошков из титановых сплавов используются порошковые смеси по патенту RU 572928 C22 от 31.05.2011 г. или губчатый титан по патенту RU 2622501 от 05.08.2015 г.

Известен способ получения порошка титана методом электроэрозионного диспергирования отходов титана, а именно стружки сплава ВТ6 по патенту RU 2631549 CI, B22F 9/14, C22B 34/12, B22H 1/00.

Недостатком данного способа является сильное окисление полученных порошков, так как основными фазами при производстве получаются окислы титана TiO и Ti2О.

Известен способ получения мелкодисперсного порошка титана по патенту RU 2609762 C1, МПК C22C 14/00, B22F 9/16, B22F 9/14 от 02.12.2015 г. В качестве сырья используется обрезь листов и слитков из титана марки ВТ1-00 и сплавов неизвестного состава. Данный способ включает активирование исходного материала в смеси азотной и фтористой кислот, затем гидрирование в камере с хлористым водородом, измельчение полученного гидрида титана в вакууме и измельчение образовавшегося титанового спека. В качестве исходного материала используется слиток, который получают вакуумным переплавом в медном водоохлаждаемом кристаллизаторе. Затем полученный слиток обрабатывают раствором, содержащем азотную и фтористоводородные кислоты и гидрируют в камере при температуре 500°С хлористым водородом. Откачка вакуумным насосом хлористого водорода составляла 5-7 часов. Слиток растрескивается, что облегчает измельчение в шаровой мельнице. Масса полученного порошка 485 г., размер фракций 20-30 мкм.

Недостатком данного способа является гидрирование исходной титановой губки; химический состав получаемых порошков из-за использования неизвестных сплавов не прогнозируем; экологически нечистое производство из-за обработки исходного сырья в смеси кислот; процесс подготовки исходных материалов к плавке составляет более 15 часов; размер получаемого слитка мал, менее 100 мм; использование водорода, термического дегидрирования в вакууме, отходы титана (стружка ВТ6) подвергается электроэрозионному диспергированию в дистиллированной воде.

Наиболее близким к заявленному способу является способ получения электрода для производства порошковых сплавов по патенту RU 2562552 C1 МПК B22F 3/087, B22F 9/06, C22C, включающий смешивание готовых порошковых компонентов и последующее спекание или прессование порошка для формирования электрода для дальнейшего производства порошковых материалов требуемого химического состава.

Недостатком данного способа является использование готовых порошков для получения электрода требуемого химического состава и неоднородность полученного химического состава электрода. Способ отличается трудоемкостью и малой производительностью.

Техническая задача, решаемая данным изобретением, заключается в создание способа получения электрода для производства порошковой металлургии, обеспечивающего экологическую чистоту производства и снижение себестоимости изготовления порошков для аддитивных и гранульных технологий.

Технический результат достигается за счет использования отходов литейного производства титановых сплавов с известным химическим составом с добавлением легирующих элементов. Электрод, полученный в вакуумной гарнисажной печи, имеет размер диаметром 70-90 мм и длиной 1200 мм.

Полученный при расплавлении отходов электрод диаметром 70-90 мм, длиной 1200 мм механически обрабатывают до диаметра 60-80 мм и передают на атомизатор для расплавления и распыления в среде аргона. Распыление осуществляется известным способом, допускается использование центробежного плазменного распыления порошка. Полученные порошки сортируют по фракциям и пакуют в специальные контейнеры, заполненные аргоном. Получаемый порошковый материал имеет точно установленный химический состав, соответствующий определенной марке сплава, как по содержанию легирующих элементов, так и по содержанию вредных примесей. Содержание кислорода при данном способе получения порошков не превышает 0,12%, что соответствует международным требованиям. Размеры получаемых фракций порошков 15-45 мкм, 5-63 мкм, 63-80 мкм, 80-100 мкм, 100-150 мкм, 150-200 мкм и имеют сферическую форму и высокую текучесть.

Существенным отличием предлагаемого способа от известных является то, что не нужно использовать водород, высокие температуры и применять метод диспергирования, что делает процесс более дешевым и производительным, а также отсутствует вероятность возникновения пожара.

Способ реализуется следующим образом.

Литейные отходы (прибыли, литники, бракованные отливки) предварительно сортируются по химическому составу, затем в дробеструйной камере очищаются от литой корки. Очищенные отходы разрезаются на заготовки размерами 30×100×200 мм и обрабатываются в течение 30 минут в галтовочном барабане для очистки от окисных загрязнений. Затем отходы очищаются металлической щеткой от различных пылевидных фракций. До 7% используется очищенная титановая стружка.

Очищенные отходы выплавляются в вакуумной гарнисажной печи и заливаются в металлическую изложницу, получая 2 слитка диаметром 70-90 мм и длиной 1200 мм. Слитки механически обрабатываются до диаметра 60-80 мм для возможности использования в качестве заготовок для газовой атомизации и плазменного центробежного распыления. Распыление производится центробежным известным способом и газовой атомизацией. Размеры фракций 15-45 мкм, 5-63 мкм, 63-80 мкм, 80-100 мкм, 100-150 мкм, 150-200 мкм. Масса порошков от 1 кг до 50 кг упакованные в специальные контейнеры.

Способ изготовления электрода для получения порошка из титанового сплава, включающий подготовку отходов литейного производства титанового сплава и формирование электрода, отличающийся тем, что для изготовления электрода используют отходы литейного производства титановых сплавов, предварительно отсортированные по требуемому химическому составу, которые очищают от литой корки в дробеструйной камере, обрабатывают в галтовочном аппарате в течение 30 мин для очистки от окисных загрязнений, после чего осуществляют выплавку в вакуумной гарнисажной печи и разливку в изложницы с формированием электрода.



 

Похожие патенты:

Изобретение относится к области электрометаллургии, в частности к получению расходуемых электродов для электрошлакового переплава. Осуществляют подачу металлизованных окатышей в форму и заполнение последней жидким металлом.

Изобретение относится к специальной электрометаллургии, а именно к получению расходуемых электродов для вакуумно-дугового переплава (ВДП). Способ включает выплавку сплава и его разливку в длинные изложницы с малой конусностью или в цилиндрические кристаллизаторы на машинах полунепрерывной разливки, при этом на боковой поверхности получаемого расходуемого электрода выполняют плоскую площадку с получением его поперечного сечения в виде круга, отсеченного хордой, при этом на упомянутую площадку приваривают полосу из необходимого для долегирования металла.

Изобретение относится к области специальной электрометаллургии, в частности к процессам получения расходуемых электродов из отходов литейного производства, используемых для отливки деталей оборудования, работающего в агрессивных средах под высоким давлением, и может быть использовано при изготовлении отливок корпусных деталей газовых задвижек и фонтанной арматуры.

Изобретение относится к области металлургии и может быть использовано для установок электрошлакового переплава. Установка содержит литейную форму, открытую кверху, и по меньшей мере один расходуемый электрод, простирающийся внутрь литейной формы, при этом ось расходуемого электрода ориентирована наклонно к вертикальной оси и угол между осью расходуемого электрода и вертикальной осью составляет от 20° до 60°.

Изобретение относится к области металлургии, в частности к получению расходуемого электрода для электрошлакового переплава с формированием многослойной отливки. В изложницу помещают нагретые до температуры 600-700°С металлические пластины и порции расплавленного металла чередующимися слоями разного химического состава.

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях. Электрод содержит два соединенных между собой элемента, выполненных из металла основы получаемого сплава и образующих по длине электрода внутреннюю полость с изменяющейся площадью поперечного сечения, в которой размещен компонент, вводимый в состав сплава, причем первый элемент выполнен в виде полого цилиндра с днищем и верхней крышкой с отверстием, а второй элемент, размещенный внутри первого элемента, выполнен в виде усеченного конуса, снабженного в верхней части цилиндрическим стержнем, проходящим через отверстие в крышке.

Изобретение относится к области металлургии и может быть использовано при изготовлении расходуемых электродов для электрошлаковой или электродуговой переплавки для изготовления отливок из циркониевых сплавов. Исходные дисперсные материалы размалывают, просеивают, уплотняют, прессуют и обжигают с обеспечением прочности расходуемого электрода.

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из кусковых отходов изношенного режущего инструмента и штамповой оснастки методом электрошлакового переплава. Кусковые отходы предварительно сортируют и перед сваркой подбирают таким образом, чтобы соотношение массовых долей используемых отходов из различных марок быстрорежущих сталей обеспечивало получение в результате переплава, полученный расходуемый электрод переплавляют, а конечный слиток имеет химический состав, отличающийся от состава исходных кусковых отходов, составляющих электрод.

Изобретение относится к области металлургии и может быть использовано для производства титансодержащих коррозионно-стойких марок стали методом электрошлакового переплава. В способе осуществляют электрошлаковый переплав расходуемого электрода в кристаллизаторе с соотношением содержания титана к алюминию в электроде в пределах 6,0-9,0, при этом содержание титана в электроде превышает требуемое содержание титана в готовой стали на величину его угара при переплаве, который определяют по зависимости: ΔTi=37Tiг+35·Tiг D2/(63+35D2), где ΔTi - средний угар титана, полученный при проведении плавок в кристаллизаторы различного профилеразмера с одинаковым коэффициентом заполнения, %; Tiг - содержание титана в готовом металле, %; D - диаметр кристаллизатора, м.
Изобретение относится к специальной электрометаллургии, а именно к производству слитков бор- и титансодержащей коррозионно-стойкой стали электрошлаковым переплавом для изготовления деталей атомного оборудования с высокой нейтронной поглощаемостью. Расходуемый электрод содержит, мас.%: углерод 0,02-0,06, марганец не более 0,5, кремний не более 0,5, никель не более 0,5, хром 13,0-16,0, медь не более 0,30, молибден не более 0,3, вольфрам не более 0,2, ванадий 0,15-0,30, титан 3,6-4,0, алюминий не более 0,5 и бор 1,3-1,8, при этом соотношение содержания титана и бора в исходном металле электрода не менее 2,2.

Изобретение относится к порошковой металлургии, в частности к устройствам для производства порошков методом распыления расплавов, и может быть использовано для получения порошков различных металлов. Устройство для получения сферических порошков металлов содержит плавильную камеру, распылитель жидкого металла, камеру распыления и порошковый приемник.
Наверх