Многоцелевая модульная платформа для создания космических аппаратов нанокласса

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули расположены последовательно друг над другом. Внутри каждого модуля установлены по меньшей мере две печатные платы со сквозными контактными соединителями. На боковой поверхности модулей, за исключением краевых модулей платформы, расположены фотоэлектрические панели. Каждый модуль монтируется в конструкцию, жестко и строго соосно зафиксированную с соседними конструкциями при помощи выступов на верхней поверхности, пазов на нижней поверхности и сквозных направляющих стержней, пропущенных в углах периметра конструкции через все модули. Высота каждого модуля может быть кратна 34 мм при ширине боковой грани 100 мм. Достигается обеспечение унификации. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к многоцелевым модульным платформам космических аппаратов нанокласса с общей массой до 10 кг.

Создание группировок космических аппаратов нанокласса базируется на быстром изготовлении большого количества космических аппаратов с низкой себестоимостью и высокими показателями надежности и стойкости к внешним воздействующим факторам. Применение модульной унифицированной структуры в таком случае позволяет снизить номенклатуру применяемых сборочных единиц и компонентов, расширить функциональные возможности, снизить трудоемкость как разработки аппаратов, так и их изготовления.

В состав практически любого космического аппарата входят такие функциональные узлы как: система электропитания, система управления, система стабилизации и ориентации, система телеметрии и целевая аппаратура (полезная нагрузка). Установка новой целевой аппаратуры на ранее разработанную немодульную платформу не всегда бывает возможной без ее переработки в силу конструктивных и технических ограничений, которыми не обладает модульная структура космического аппарата (КА).

Из уровня техники известна многоцелевая служебная платформа для создания крупных космических аппаратов (патент RU2375267). Платформа содержит модуль служебной аппаратуры в форме прямоугольного параллелепипеда (торцевая, четыре боковых платы и две промежуточных платы). Между платами установлены аккумуляторные батареи и электронные приборы. Узлы установки модуля полезной нагрузки расположены на свободных торцах боковых плат модуля и выступающих кронштейнах в пространстве между солнечными батареями и свободной зоной модуля со стороны открытой его части.

К недостаткам известной многоцелевой служебной платформы следует отнести то, что полезная нагрузка монтируется в ограниченном объеме, так же с ограничениями по потребляемой мощности, тепловыделению и интерфейсам что накладывает существенные ограничения и может привести к невозможности применения полезной нагрузки на данной платформе.

Также известна модульная унифицированная наноспутниковая платформа ТНС-0 №2 для малоразмерных космических аппаратов АО «Российские космические системы» (см. http://russianspacesystems.ru/2018/01/22/novaya-rossiyskaya-modulnaya-platforma/). Платформа имеет цилиндрическую шестиугольную форму и включает в себя интегрированную бортовую вычислительную систему на базе сигнального процессора, ПЛИС и микроконтроллера, управляющая всеми подсистемами спутника (см. Презентация «ТНС-0-2» - платформа нанокласса для отработки технологий и научных экспериментов в космосе», Панцырный О.А., Хромов О.Е., Селиванов А.С., Самара 2017 г.). В основе данной конструкции лежит сотовая плита, на которую монтируются служебные части системы, следовательно, платформа имеет строго определенную длину, ограниченный энергоресурс и фиксированное расположение блоков внутри аппарата, которая ограничивает возможность размещения полезной нагрузки в КА и не допускает возможности масштабирования систем КА.

В качестве ближайшего аналога предлагаемого изобретения может быть выбрана платформа CubeSat. Космическая платформа CubeSat основана на симметричном кубе со стороной 10 см. В соответствии со стандартом (CubeSat см. CubeSat Design Specification rev13) допускается построение спутника из нескольких кубов с различными целевыми функциями и максимальной массой 1,3 кг на куб.

Однако, платформа CubeSat имеет малые габариты плат входящих модулей (площадь платы не превышает 0,81 дм2), маленькую рабочую освещаемую площадь солнечных панелей. При этом существует необходимость стыковки кубов шлейфами и кабелями, что приводит к высокой трудоемкости сборки. К недостаткам платформы CubeSat следует отнести низкую плотность компоновки, а также несовместимость модулей и плат различных серий и различных производителей.

В свою очередь, заявленная многоцелевая модульная платформа направлена на снижение трудоемкости и себестоимости изготовления КА нанокласса, обеспечение унификации и стандартизации массогабаритных и электрофизических характеристик, обеспечение «гибкости» платформы к требованиям полезной нагрузки, обеспечение стыковки модулей различных производителей друг с другом.

Для достижения поставленных задач многоцелевая модульная платформа для создания космических аппаратов нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули расположены последовательно друг над другом. Внутри каждого модуля установлены, по меньшей мере, две печатные платы со сквозными контактными соединителями. На боковой поверхности модулей, за исключением краевых модулей платформы, расположены фотоэлектрические панели. Каждый модуль монтируется в конструкцию, жестко и строго соосно зафиксированную с соседними конструкциями (конструкциями расположенных друг над другом модулей) при помощи выступов на верхней поверхности и пазов на нижней поверхности, расположенных по периметру конструкции и сквозных направляющих стержней, пропущенных в углах периметра конструкции через все модули. Высота каждого модуля кратна 34 мм при ширине боковой грани 100 мм.

На фиг. 1 представлен общий вид модуля модульной платформы.

На фиг. 2 представлен общий вид космического аппарата нанокласса, построенного на основе заявленной многоцелевой модульной платформы.

Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы. Форма шестиугольной призмы позволяет обеспечить освещенность 2-3 солнечных панелей, находящихся на сторонах КА. Многоцелевая модульная платформа космического аппарата состоит из набора унифицированных масштабируемых модулей (фиг. 1): модуль электропитания, модуль аккумуляторной батареи (АКБ), модуль системы ориентации и стабилизации, модуль приемо-передающего устройства, модуль центрального вычислителя, краевой модуль 8 (фиг. 2).

Модули 7 устанавливаются друг на друга, образуя из отдельных конструкций модулей общую конструкцию КА нанокласса (фиг. 2) и фиксируются шестью сквозными направляющими стержнями, например, шпильками М4, пропущенными в углах 6 периметра конструкции через все модули 7, а также с помощью выступов 5 на верхней поверхности и глухих отверстий на нижней поверхности, расположенных по периметру конструкций, следующих друг за другом модулей 7. Обеспеченная таким образом жесткая фиксация позволяет точно ориентировать модули 7 относительно оси симметрии КА. Шестиугольная форма фрезерованной рамки 1, центровочные ключи и цилиндрический отсек пускового устройства за счет получения необходимой жесткости конструкции и соосности модулей гарантируют отсутствие заклинивания КА внутри пускового отсека.

Модули 7 содержат рамку 1, не менее 2-х печатных плат 2, расположенных друг над другом, площадь которых может достигать до 2,4 дм2, а также сквозные соединители 3, которые обеспечивают электрические связи между модулями 7. На боковой поверхности модуля 7, за исключением краевых модулей 8 платформы, расположены фотоэлектрические панели 4. Таким образом, общая мощность фотоэлектрической батареи КА, объединяющей отдельные фотоэлектрические панели, зависит от общего количества модулей, а емкость АКБ и количество переключаемых нагрузок зависит от количества примененных модулей АКБ и модулей электропитания соответственно.

Снижение мощности фотоэлектрической батареи (фотоэлектрических панелей) одной стороны КА может быть определено по формуле:

(1/L)⋅100%,

где L - высота КА в юнитах (юнит - модуль с высотой 34 мм). Таким образом, повреждение одной из фотоэлектрических панелей не приводит к отказу всей фотоэлектрической батареи одной стороны КА.

Высота каждого модуля 7 кратна 34 мм (34 мм - 1U модуль, 68 мм - 2U модуль, 102 мм - 3U модуль) при ширине грани 100 мм. Установленные размеры модулей 7 обусловлены требованиями, предъявляемыми к аппаратам нано класса и возможностью применения унифицированной элементной компонентной базы. Данное конструктивно-техническое расположение модулей удовлетворяет требованиям по массо-габаритным, энергетическим, экономическим и эргономическим показателям, предъявляемым к КА нано класса. Краевые модули 8 имеют в составе одну плату 2, ленточные, пленочные или навесные АФУ, а также датчики или фотоэлектрические панели, которые могут быть установлены на внешней поверхности платформы модулей 8.

Таким образом, заявленная архитектура многоцелевой модульной платформы обеспечивает построение платформы КА из унифицированных модулей различных производителей с возможностью масштабирования систем КА путем применения нескольких модулей, что способствует увеличению емкости АКБ или мощности преобразователя напряжения, позволяет сократить трудоемкость разработки и сроки изготовления КА.

1. Многоцелевая модульная платформа космического аппарата нанокласса, выполненная в форме шестиугольной призмы и состоящая из набора унифицированных масштабируемых модулей, характеризующаяся тем, что модули расположены последовательно друг над другом,

внутри каждого модуля установлены по меньшей мере две печатные платы со сквозными контактными соединителями, а на боковой поверхности модулей, за исключением краевых модулей платформы, расположены фотоэлектрические панели, при этом каждый модуль монтируется в конструкцию, жестко зафиксированную при помощи выступов на верхней поверхности и пазов на нижней поверхности, расположенных по периметру конструкции, и сквозных направляющих стержней, пропущенных в углах периметра конструкции через все модули.

2. Многоцелевая модульная платформа космического аппарата нанокласса по п. 1, характеризующаяся тем, что высота каждого модуля кратна 34 мм при ширине боковой грани 100 мм.



 

Похожие патенты:

Изобретение относится к космической технике и может быть использовано на космических аппаратах (КА) для обеспечения ориентации на Солнце. Способ ориентации КА обеспечивает ориентацию КА относительно направления на Солнце с использованием дополнительного автономного контура управления.
Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла.

Изобретение относится к сборке панелей солнечных батарей (СБ) космического аппарата. Способ заключается в том, что к центральной панели СБ с обеих сторон закрепляют посредством шарнирных узлов боковые панели СБ.

Изобретение относится к сборке панелей солнечных батарей (СБ) космического аппарата. Способ заключается в том, что к центральной панели СБ с обеих сторон закрепляют посредством шарнирных узлов боковые панели СБ.

Изобретение относится к информационным космическим системам (КС) для комплексного мониторинга Земли. КС содержит компактные и легкие космические аппараты (КА), взаимодействующие с распределенными наземными комплексами управления, приема и обработки изображений.

Изобретение относится к информационным космическим системам (КС) для комплексного мониторинга Земли. КС содержит компактные и легкие космические аппараты (КА), взаимодействующие с распределенными наземными комплексами управления, приема и обработки изображений.

Изобретение относится к космической технике, а именно к конструкциям солнечных батарей, и может быть использовано при создании космического аппарата. Технической проблемой, на решение которой направлено заявляемое изобретение является отсутствие крепления звеньев штанги батареи солнечной в ее сложенном положении, приводящее к соударениям элементов космического аппарата.

Изобретение относится к аэрокосмической технике, а более конкретно к системам жизнеобеспечения. Способ регулирования температуры воздуха на борту пилотируемого космического аппарата (КА) включает определение положения относительно направления на Солнце корпуса КА и радиаторов-излучателей системы терморегулирования (СТР), задание параметров работы СТР, поддержание температуры воздуха в задаваемом диапазоне значений и контроль расхода теплоносителя в магистрали радиатора-излучателя.

Изобретение относится к области космической техники, а более конкретно к солнечным батареям. Подкос солнечной батареи содержит двухзвенный механизм, первые концы звеньев которого состыкованы друг с другом соединением «ухо-вилка».

Изобретение относится к космической технике, в частности к реализации раскрытия многосекционных конструкций космических аппаратов. Способ раскрытия многосекционных конструкций заключается в снятии основных связей, развороте секций, снятии дополнительных связей после разворота и фиксации секции в конечном положении.

Изобретение относится к области космической техники, а более конкретно к малоразмерным исследовательским бинарным космическим аппаратам (БКА). БКА для поиска и сбора внеземных нанообъектов с магнитными свойствами в окрестностях точек либрации содержит два цилиндрообразных корпуса, четыре мультивекторных матричных ракетных двигателя (ММРД).
Наверх