Измерительный модуль

Изобретение относится к области учебного оборудования и касается конструкции измерительных модулей, например с сенсором для измерения водородного показателя. Техническим результатом является обеспечение возможности проведения различных демонстраций и изменения условий проведения опытов и экспериментов при визуализации получаемых результатов. Изобретение представляет собой измерительный модуль, содержащий разъёмный корпус с элементами фиксации, расположенной в нем печатной платой с микроконтроллером, отверстием в корпусе с размещенным в нем сенсором, связанным с микроконтроллером, и другим отверстием в корпусе с размещенным в нем USB-разъемом, связанным с микроконтроллером, в которых корпус снабжен дополнительным отверстием, а сенсор выполнен в виде комбинированного стеклянного электрода с пластмассовой трубкой, внутри которой размещена стеклянная трубка со стеклянным шариком на конце. 3 ил.

 

Изобретение относится к области учебного оборудования и касается конструкции измерительных модулей, например с сенсором для измерения водородного показателя (показателя рН), характеризующего активность ионов водорода в растворах, применяемых в системах средств обучения, в том числе, при проведении лабораторных работ с системой управления измерениями в средних общеобразовательных и высших учебных заведениях, а также при проведении исследовательских работ, оно может быть использовано при изучении физики, акустики, механики, термодинамики, электроники и других учебных дисциплин.

Из области техники известно устройство для исследования закона сохранения кинетического момента механической системы, содержащее основание, установленную в основании с возможностью вращения вокруг вертикальной оси симметричную рамку с вертикальными стойками и механизм создания кинетического момента, включающий в себя тело вращения, установленное в корпусе, который посредством горизонтальных полуосей шарнирно закреплен в вертикальных стойках рамки, электродвигатель, датчики угловых скоростей с блоком питания датчиков и электродвигателя, блок регистрации и обработки сигналов датчиков, в качестве блока регистрации и обработки сигналов датчиков применен персональный компьютер с аналого-цифровым преобразователем (см. патент на полезную модель RU №183308, Кл. G09B 23/10, оп. в 2018 г.). Данное устройство смонтировано на основании - платформе с вертикальными стойками и снабжено электродвигателем, датчиками угловых скоростей, блоком обработки данных с возможностью подключения к компьютеру.

Это устройство обеспечивает регистрацию угловых скоростей посредством датчиков и количественного сравнения результатов экспериментов с теоретическими расчетами, однако оно не предназначено для исследовательских работ.

Известен герконовый датчик к комплекту для демонстрации законов механики, включающий корпус с магнитом, служащим для взаимодействия с магнитной полосой, закрепляемой на несущей скамье, входящей в состав комплекта, и расположенный внутри корпуса геркон, при этом корпус герконового датчика состоит из опорной части, на которой закреплен упомянутый магнит и которая выполнена с возможностью обеспечения стабильного позиционирования датчика относительно механической скамьи комплекта при установке его на упомянутой магнитной полосе, и из несущей части в виде капсулы, вытянутой в осевом направлении, замкнутая внутренняя осевая полость которой служит для размещения геркона, а несущая часть в поперечном сечении имеет конфигурацию, при которой обеспечена возможность стабильного срабатывания геркона при расположении инициирующего магнита с любой точки периметра несущей части (см. патент на изобретение RU №2460146, Кл. G09B 23/06, оп.в 2012 г.). Этот датчик имеет достаточно узкую сферу применения.

Известен датчик (измерительный модуль), включающий разъемный корпус, в котором установлена электронная плата, чувствительный элемент, установленный в специальном отверстии корпуса и связанный с электронной платой, при этом корпус имеет разъем для соединения с интерфейсным кабелем компьютера, отверстие с гайкой для крепления корпуса и магнитную полосу на его нижней плоскости (см. патент на полезную модель RU №93565, кл. G09B 23/00, оп. в 2010 году). Корпус такого датчика (измерительного модуля) является удобным для размещения в нем чувствительного элемента и проведения разных измерений. Однако в современных условиях проведение лабораторных работ предполагает использование измерительного модуля в системах управления измерениями, что не предусмотрено в известном датчике.

Наиболее близким к заявленному техническому решению является измерительный модуль, включающий снабженный отверстием корпус, в котором расположена снабженная соединительным проводом печатная плата, на которой смонтированы электронные компоненты, при этом корпус состоит из основания и крышки, причем основание корпуса выполнено плоским, а его наружная поверхность снабжена магнитной пластиной, а на внутренней поверхности по контуру выполнен направляющий элемент, и закреплены ложементы для источников питания, а между ложементами выполнены с резьбовым осевым отверстием трубчатые стойки, на которых закреплена печатная плата, соединительные провода которой соединены с входным разъемом и/или чувствительным измерительным элементом, фиксируемым в ложементе фиксатора, закрепленного на основании, печатная плата включает порт для подключения к компьютеру, при этом крышка выполнена двояковыпуклой и состоит из двух частей, носовой и взаимодействующей по линии разъема основной части, причем носовая часть снабжена не менее чем одним окном, для выхода чувствительного элемента и/или входного разъема, а по контуру основания носовой части крышки выполнен направляющий элемент, а внутри основной части крышки выполнены упоры-фиксаторы, прижимающие источники питания, а в задней зоне основной части крышки выполнено окно для соединения порта с USB компьютера, причем контур основной части крышки снабжен направляющим элементом, взаимодействующим с опорным элементом носовой части крышки и направляющим элементом плоского основания (см. патент RU №2570216, кл. G12B 9/02, оп. в 2015 году).

Техническая проблема заключается в том, что описанные устройства не предназначены для решения исследовательских задач, они не дают возможности управления процессом исследования и изменения условий исследования. В них остается нерешенной задача объединения вопросов одновременного изучения физики, механики и электроники на одной универсальной базе. Решение данной задачи не должно ограничиваться только возможностью обучения, оно должно давать возможность проводить различные демонстрации и ставить эксперименты.

Настоящее изобретение направлено на решение технической задачи повышения универсальности и многофункциональности измерительного модуля для измерения показателя рН с возможностью проведения различных демонстраций и изменения условий проведения опытов и экспериментов при визуализации получаемых результатов.

Решение поставленной технической задачи достигается за счет того, что в измерительном модуле для измерения показателя рН, содержащем разъемный корпус с элементами фиксации, расположенной в нем печатной платой с микроконтроллером, отверстием в корпусе с размещенным в нем сенсором, связанным с микроконтроллером, и другим отверстием в корпусе с размещенным в нем USB-разъемом, связанным с микроконтроллером, корпус снабжен дополнительным отверстием, а сенсор выполнен в виде комбинированного стеклянного электрода с пластмассовой трубкой, внутри которой размещена стеклянная трубка со стеклянным шариком на конце, при этом сенсор снабжен кабелем с разъемом BNC для подключения к печатной плате, а печатная плата снабжена усилителями, расположенными между кабелем и микроконтроллером, причем измерительный модуль снабжен расположенным на печатной плате аналоговым (IDC) разъемом для подключения к плате открытой архитектуры, размещенным в дополнительном отверстии корпуса.

Изобретение поясняется чертежами.

На фиг. 1 изображена схема управления измерительного модуля с сенсором для измерения водородного показателя (показателя рН), характеризующего активность ионов водорода в растворах. На фиг. 2 - то же, внешний вид измерительного модуля с сенсором для измерения показателя рН, с приподнятой крышкой, вид в изометрии. На фиг. 3 изображена система управления измерениями с измерительным модулем, условно подключенным к исследовательскому оборудованию.

Изображенный на фиг. 1 и 2 измерительный модуль предназначен для проведения различных измерений, например для измерения водородного показателя (показателя рН), характеризующего активность ионов водорода в растворах, но при этом имеет возможность, благодаря подключению к системе управления измерениями, быть использован в учебном или исследовательском оборудовании с управляемыми элементами, а также для проведения занятий в интерактивном режиме.

Измерительный модуль, представленный на фиг. 1 и 2, содержит разъемный корпус 1, состоящий из основания 2 и крышки 3 с разными элементами фиксации. Корпус 1 содержит гайку (на рисунке не показано) в гнезде (на рисунке не показано) основания 2, предназначенную для установки оси крепления модуля в штативе (на рисунке не показано). Внутри основания 2 размещена печатная плата 6 с микроконтроллером 7, который включает аналогово-цифровой преобразователь 8, блок 9 математической обработки, блок 10 калибровки, блок 11 преобразователя USB. На корпусе 1 имеются отверстие 12 для установки USB-разъема 13, связанного с блоком 11 микроконтроллера 7, и дополнительное отверстие 14 с аналоговым (IDC) разъемом 15 для подключения к внешним устройствам, например, плате 16 открытой архитектуры (см. фиг. 3), связанным с микроконтроллером 7. Также корпус 1 оснащен отверстием 17 для вывода сенсора 18 кислотности жидкости, предназначенного для измерения водородного показателя (показателя рН), характеризующего активность ионов водорода в растворах. Сенсор 18 выполнен в виде комбинированного стеклянного электрода с пластмассовой трубкой 19, внутри которой размещена стеклянная трубка 20 со стеклянным шариком 21 на конце, при этом сенсор 18 снабжен кабелем 22, который через разъем BNC (на рисунке не показано) подключен к печатной плате 6. На плате установлены микроконтроллер 7 с аналогово-цифровым преобразователем 8, усилители 23 и 24. USB-разъем 13 предназначен для подключения к внешним устройствам, например к компьютеру 25. В измерительном модуле предусмотрено использование блока радиоканала 26 (см. фиг. 3). На внешней стороне основания 2 корпуса 1 может быть расположена магнитная полоса (на рисунке не показано) для прикрепления к металлическим и намагниченным поверхностям.

Встроенный в систему управления измерениями измерительный модуль для измерения показателя рН используют следующим образом. Сенсор 18 кислотности (рН) погружают в сосуд (на рисунке не показано) с измеряемой жидкостью, при этом возникает потенциал на стеклянном шарике 21, который прямо пропорционален уровню рН. Далее сигнал усиливается на усилителях 23 и 24 и поступает в аналогово-цифровой преобразователь 8 микроконтроллера 7. Оцифрованный сигнал попадает через USB-разъем 13 к компьютеру 25 и через аналоговый (IDC) разъем 15 к плате 16 открытой архитектуры. Сигнал блока радиоканала 26 можно подавать на разные внешние устройства, например, на мобильное устройство 27. Если плата 16 открытой архитектуры связана с каким-то исполнительным устройством, например, электродвигателем 28, то на плату 16 открытой архитектуры системы управления измерениями через аналоговый (IDC) разъем 15 подают сигнал от сенсора 18. Электродвигателем 28 двигают поршень цилиндра (на рисунке не показано) с жидкостью, имеющий иные показатели кислотности. Противоположный конец цилиндра связан с сосудом, наполненным измеряемой жидкостью. Двигая поршень, впрыскивают жидкость, находящуюся в цилиндре, в сосуд. В сосуде начинает изменяться показатель (рН). Сигнал от сенсора 18 об измененных показателях (рН) попадает на компьютер 25 и на плату 16 открытой архитектуры. Имея обратную связь с результатами изменения исследуемой среды, можно продолжать движение поршня в цилиндре и получать на мониторе компьютера 25 разные значения в экстремумах, а также изучать зависимость изменения рН от подачи разных жидкостей. Исследовательское оборудование, предназначенное для использования данного измерительного модуля, может быть различным. Конструкция измерительного модуля позволяет его применять в различных исследовательских схемах и управлять проведением исследований, изменяя исходные и выходные параметры. Исследовательское оборудование может иметь стойки с каретками, на которых можно располагать элементы воздействия на оборудование, связанные с системой управления измерениями (на рисунке не показано). На отдельной площадке можно закреплять измерительные модули, связанные с системой управления измерениями.

Такое оборудование может быть использовано в наборе-конструкторе для изучения электроники, физики и механики, а также для проведения различных исследований, объединяя в себе задачи по механической сборке корпусных элементов, монтажу электрических схем, с использованием модулей для измерения различных показателей, цифровой обработки их сигналов, взаимодействию различных элементов комплекта посредством проводного протокола, а также взаимодействия комплекта в целом с системой управления измерениями. Исследовательское оборудование можно использовать в школах, средних учебных заведениях и в высшей школе, а также при проведении различных научных экспериментов. Плата 16 открытой архитектуры обеспечивает управление электродвигателем 28 (или другим исполнительным устройством) для получения различных показателей с использованием вышеописанных измерительных модулей, оснащенных аналоговыми (IDC) разъемами 15 и USB-разъемами 13. Благодаря наличию этих разъемов в измерительных модулях и возможности подключения к системе управления измерениями, школьники, студенты и исследователи имеют средства для перехода на новый уровень проведения экспериментов и различных демонстраций - это интерактивное изменение условий проведения опытов и экспериментов при визуализации получаемых результатов.

Таким образом, технический результат, достигаемый с использованием заявленного изобретения, заключается в повышении универсальности и многофункциональности измерительного модуля для измерения показателя рН с возможностью проведения различных демонстраций и изменения условий проведения опытов и экспериментов при визуализации получаемых результатов.

Измерительный модуль для измерения показателя рН, содержащий разъемный корпус с элементами фиксации, расположенной в нем печатной платой с микроконтроллером, отверстием в корпусе с размещенным в нем сенсором, связанным с микроконтроллером, и другим отверстием в корпусе с размещенным в нем USB-разъемом, связанным с микроконтроллером, отличающийся тем, что корпус снабжен дополнительным отверстием, а сенсор выполнен в виде комбинированного стеклянного электрода с пластмассовой трубкой, внутри которой размещена стеклянная трубка со стеклянным шариком на конце, при этом сенсор снабжен кабелем с разъемом BNC для подключения к печатной плате, а печатная плата снабжена усилителями, расположенными между кабелем и микроконтроллером, причем измерительный модуль снабжен расположенным на печатной плате аналоговым (IDC) разъемом для подключения к плате открытой архитектуры, размещенным в дополнительном отверстии корпуса.



 

Похожие патенты:

Изобретение относится к учебным приборам и предназначено для проведения химических исследований, а также для проведения химических синтезов в контролируемых условиях и изучения взаимодействий в растворе. Автоматизированная установка для проведения химических исследований содержит основание с установленными на нём прозрачной реакционной ёмкостью с мешалкой и нагревателем, связанной с ёмкостями для реактивов с крышками, оснащенными перистальтическими насосами с подводящими и отводящими трубками, измерительными средствами, включающими измерительный модуль температуры, связанными с системой управления и визуализации, при этом она снабжена измерительным модулем электропроводности, измерительным модулем рН и измерительным модулем редокс-потенциала, связанными с системой согласования сигналов измерительных модулей, при этом мешалка выполнена в виде тефлонового стержня с двумя лопастями и возможностью регулирования по высоте, а нагреватель выполнен в виде пробирки из термостойкого стекла, в которую погружена нихромовая спираль, засыпанная песком, причем крышка реакционной ёмкости снабжена крепёжными гнёздами для щупов измерительных модулей, выполненными в виде цанговых зажимов с резиновой прокладкой, а установка снабжена подвесной полкой - общим основанием для щупов измерительных модулей в нерабочем положении.

Изобретение относится к системе рабочих станций учащихся и преподавателя, включающей модульные демонстрационные панели, получающие электропитание от устойчивых к короткому замыканию источников безопасного низкого напряжения, для безопасного проведения экспериментов в школьных классах и учебных заведениях в области физики - электротехники и электрохимии.

Предлагается способ обучения персонала контролю качества при расфасовке аморфных товаров (128) в первичное упаковочное средство (118). Способ включает в себя следующие шаги: а) по меньшей мере один шаг обеспечения, причем на шаге обеспечения обеспечивают по меньшей мере один тестовый набор (112) заполненных первичных упаковочных средств (118), причем тестовый набор (112) имеет несколько заполненных аморфным товаром первичных упаковочных средств (118), причем по меньшей мере одно первичное упаковочное средство (118) из заполненных первичных упаковочных средств (118) имеет по меньшей мере одно загрязнение (138), причем загрязнение (138) имеет по меньшей мере один флуоресцирующий маркер (142), б) по меньшей мере один шаг обучения, причем на шаге обучения тестовый набор (112) предъявляют по меньшей мере одному обучаемому лицу, причем обучаемое лицо выполняет визуальный контроль качества для обнаружения загрязнений (138), причем результат шага обучения документируют, в) по меньшей мере один шаг верификации, причем на шаге верификации тестовый набор (112) облучают светом (116) возбуждения, причем обнаруживают флуоресцирующие загрязнения (138), причем результат шага верификации документируют, и г) по меньшей мере один шаг сравнения, причем на шаге сравнения сравнивают результат шага обучения и результат шага верификации.

Изобретение относится к специальному оборудованию, предназначенному для обучения студентов вузов и колледжей техническим дисциплинам. Лабораторная установка обратного осмоса и химического обессоливания включает стол с горизонтальной и вертикальной установочными поверхностями, на которых размещены питательный насос 1 с водонапорной магистралью, накопительный бак 5, механический фильтр 2, соединительные патрубки, задвижки отбора пробы и запорную арматуру.

Изобретение относится к специальному оборудованию, предназначенному для изучения процессов фильтрования. .

Изобретение относится к средствам проведения лабораторных опытов. .

Изобретение относится к созданию учебной лаборатории для изучения порошковых материалов. .

Изобретение относится к средствам обучения учащихся в учебных заведениях различного уровня на уроках химии, а именно к средствам проведения практических химических экспериментов, а также для научных исследований. .

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов ртути в растворах. Раскрыт состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло, состоящее из: 1) потенциалопределяющего вещества; 2) соединения с высокой ионно-электронной проводимостью; 3) стеклообразователя, где в качестве потенциалопределяющего вещества использован иодид ртути HgI2 в количестве 15-35 мол.
Наверх