Способ контроля запыленности



Способ контроля запыленности
Способ контроля запыленности
G01N2021/945 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2763687:

федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет», (ДГТУ) (RU)

Предлагаемый способ относится к оптико-электронным способам контроля концентрации и вещественного состава пыли. Изобретение может быть использовано в промышленности для определения общей концентрации, с целью управления вентиляционным оборудованием предприятия по пылевому фактору и для предупреждения взрывов пыли. Предложен способ контроля запыленности, в котором последовательно генерируются импульсы светового излучения на длинах волн в области максимального и минимального поглощения пыли и их пропускание через опорный и измерительный канал, на выходе которых измеряется ослабление излучения, по которому судят о концентрации пыли. При этом в измерительном канале нагреваются смотровые окна, контролируется их запыленность и осуществляется их автоматическая очистка, а также измеряется температура окружающей среды. Кроме этого для повышения точности измерения и возможности определения вещественного состава пыли дополнительно в измерительном канале регистрируется рассеянное на двух длинах волн излучение под углом 90 градусов к оси падающего излучения, затем определяются логарифмы отношения полученных пар сигналов, которые сравниваются со значениями, помещенными в память микроконтроллера. Технический результат - повышение точности непрерывного измерения концентрации, определение вещественного состава пыли. 1 ил.

 

Предлагаемый способ относится к оптико-электронным способам контроля концентрации и вещественного состава пыли.

Изобретение может быть использовано в промышленности для определения концентрации пыли и ее вещественного состава с целью управления вентиляционным оборудованием предприятия по пылевому фактору и для предупреждения взрывов пыли.

Известно устройство (пат. DE №4119406, МПК G01N21/27, опубл. 10.12.1992), позволяющее измерять концентрацию пыли методом поглощения света. Недостатками этого устройства является невозможность определения вещественного состава пыли, а так же отсутствия защиты от факторов, вносящих значительную погрешность измерения, что делает невозможным использование устройства в автоматическом режиме. К этим факторам относится периодическая запыленность смотровых окон, постоянное изменение температуры окружающей среды.

Известен оптический пылемер (пат. RU №2095792, МПК G01N21/85, опубл. 10.11.1997) для непрерывного измерения запыленности газов. Принцип работы устройства заключается в следующем: в оптическом пылемере первый излучатель расположенный перед рабочей камерой, формирует измерительный канал и оптически связан с фотоприемником через защитные окна рабочей камеры, второй излучатель, расположенный за рабочей камерой, формирует контрольный канал и оптически связан с фотоприемником, третий излучатель расположен внутри устройства за рабочей камерой и формирует дополнительный контрольный канал и оптически связан с фотоприемником через защитное окно. При поочерёдном снятии показаний со всех излучателей определяется уровень запылённости в измерительном канале и сравнивается с данными, полученными с контрольных каналов.

Недостатками описанного выше устройства являются отсутствие защиты от запыленности смотровых окон, изменения температуры окружающей среды и погрешностью, обусловленной влиянием изменения неконтролируемых параметров, отсутствие возможности определения вещественного состава пыли.

Известен оптический абсорбционный пылемер (Клименко А.П, Королёв В.И., Швецов В.И. Непрерывный контроль концентрации пыли. Киев: ”Техника”, 1980- с. 62-65). Принцип работы устройства заключается в следующем: свет от источника формируется в два потока. Один из них отправляется в газоход с измеряемой пылегазовой средой и, с помощью системы зеркал, проходит через коммутатор каналов и воспринимается фотоприёмником. Второй световой поток проходит через эталонный канал, который заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного промышленного предприятия. Световой поток, прошедший эталонный канал, с помощью системы зеркал попадает на коммутатор каналов и воспринимается тем же фотоприёмником. Сигнал с выхода фотоприёмника поступает на усилитель, далее на блок разделения измерительного сигнала и сигнала сравнения, далее на логарифмирующие устройство, результаты измерения регистрируются измерительным прибором.

Недостатками описанного выше устройства являются отсутствие защиты от запыленности смотровых окон, изменения температуры окружающей среды и погрешностью, обусловленной влиянием изменения неконтролируемых параметров, отсутствие возможности определения вещественного состава пыли.

Известен оптический пылемер для системы управления проветриванием предприятия (пат. RU № 2210070, МПК G01N21/59, G01N21/15, опубл. 10.08.2003). Принцип работы устройства заключается в следующем:

Генератор функционально-импульсной развёртки подаёт импульсное напряжение на источник светового излучения, оптически связанный со входом устройства разделения светового потока, основное назначение которого направлять разделённые световые потоки в измерительный и опорный канал.

Импульсное световое излучение проходя через измерительный канал ослабляется пылью и поступает на фотоприёмник, расположенный в устройстве обработки электрического сигнала.

Импульсное световое излучение проходя через опорный канал изменяется незначительно и поступает на фотоприёмник опорного канала, расположенный в устройстве обработки электрического сигнала.

Устройство контроля запылённости смотрового окна осуществляет управление устройством обдува со специально-закреплёнными на лопастях вентилятора очищающими щётками, автоматически приближающимися к смотровым окнам при работе вентилятора.

К его недостаткам можно отнести погрешность, возникающую при изменении неконтролируемых параметров: влажности, концентрации углекислого газа, метана и др., отсутствие возможности определения вещественного состава пыли.

Наиболее близким техническим решением является оптический пылемер, (патент RU № 2558278, МПК G01N21/59, G01N21/15, опубл. 27.07.2015), содержащий измерительный и опорный каналы с двумя защитными окнами при этом опорный канал заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного предприятия; устройство контроля запыленности смотровых окон оптически связанное с первым смотровым окном в измерительном канале, выход которого является входом для устройства управления, выход которого подключен к устройству обдува, которое осуществляет обдув защитных окон; также содержит устройство контроля температуры, выход которого подключен к микроконтроллеру, так же содержит устройство подогрева смотровых окон, поддерживающее температуру смотровых окон измерительного канала в заданных пределах, так же содержит по два источника излучений в измерительном и опорном каналах, работающих на длинах волн в области максимального и минимального поглощения пыли и управляемых микроконтроллером, излучения с которых последовательно при помощи разделительных призм и зеркал направляются через измерительный и опорный каналы в единый световой поток и далее на вход широкополосного фотоприемника, который последовательно соединен с усилителем и микроконтроллером, определяющим уровень запыленности и соединенным с устройствами обдува и подогрева смотровых окон.

К недостаткам можно отнести отсутствие возможности определения вещественного состава пыли.

Техническим результатом предлагаемого изобретения является повышение точности непрерывного измерения концентрации, возможность определения вещественного состава пыли.

Поставленная задача достигается тем, что способ контроля запыленности, в котором последовательно генерируются импульсы светового излучения на длинах волн в области максимального и минимального поглощения пыли и их пропускание через опорный и измерительный канал, на выходе которых измеряется ослабление излучения, по которому судят о концентрации пыли, при этом в измерительном канале нагреваются смотровые окна, контролируется их запыленность и осуществляется их автоматическая очистка, а также измеряется температура окружающей среды, кроме того для повышения точности измерения и возможности определения вещественного состава пыли определения вещественного состава пыли дополнительно в измерительном канале регистрируется рассеянное на двух длинах волн излучение под углом 90 градусов к оси падающего излучения, затем определяются логарифмы отношения полученных пар сигналов, которые сравниваются со значениями, помещенными в память микроконтроллера.

На чертеже представлена общая схема устройства для реализации способа в соответствии с формулой изобретения.

Устройство содержит источники излучения 1 - 4, разделительные призмы 6, 9, 20, зеркала 5, 7, 8, 10, 19, 21, 27, первое 17, второе 18 и третье 26 защитные окна измерительного канала 15, опорный канал 16, устройство подогрева смотровых окон 11, устройство контроля запыленности смотровых окон 12, оптически связанное со смотровым окном 17, устройство управления обдувом 13, устройство обдува защитных окон 14, устройство контроля температуры 25, широкополосные фотоприемники 22, 28, усилители 23, 29, микроконтроллер 24.

Работает устройство по предлагаемому способу следующим образом. Микроконтроллер 24 последовательно подает импульсное напряжение на источники излучения 1,3 и 2,4, при этом источники излучения 1,3 имеют длину волны в области максимального поглощения пыли, а источники излучения 2,4 имеют длину волны в области минимального поглощения пыли. При этом микроконтроллер последовательно подает одинаковые пачки импульсов на излучатели 1, 3, 2 и 4. Сформированная пачка импульсов от источника излучения 1 через разделительную призму 6 излучение поступает в измерительный канал 15, в следующий момент времени вторая пачка импульсов поступает на источник излучения 3 и далее излучение поступает в опорный канал 16, в следующий момент времени третья пачка импульсов поступает на источник излучения 2 и далее излучение через зеркала 7, 5 и разделительную призму 6 поступает в измерительный канал 15, в следующий момент времени четвертая пачка импульсов поступает на источник излучения 4 и далее излучение через зеркала 10, 8 и разделительную призму 9 поступает в опорный канал 16. Далее процесс формирования пачек импульсов на источники излучения 1,3, 2,4 повторяется. Таким образом, на выходе второго и третьего смотрового окна 18 измерительного канала 15 имеется последовательность пачек световых импульсов, сформированных источниками 1,2, а на выходе второго смотрового окна опорного канала 16 имеется последовательность пачек световых импульсов, сформированных источниками 3, 4. Импульсное световое излучение проходя через измерительный канал 15 ослабляется и рассеивается пылью по закону Бугера-Ламберта-Бера и теории Ми. Далее световые импульсы от источников излучения 1,2 измерительного канала 15 поступают через разделительную призму 20 на вход фотоприемника 22 (ослабленные импульсы) и на вход фотоприемника 28 (рассеянные импульсы).

Световые импульсы от источников излучения 3,4 опорного канала поступают через зеркала 21, 19 и разделительную призму 20 так же на вход фотоприемника 22. При этом световые импульсы располагаются в последовательности 1, 3, 2, 4. Сформированная фотоприемниками 22 и 28 последовательность импульсов электрического тока поступает через усилители 23, 29 в микроконтроллер 24, где происходит обработка полученных последовательностей.

Обработка информации, поступающей с фотоприемника 22 и характеризующая ослабление излучения пылью, происходит микроконтроллером 24 следующим образом: сначала происходит вычитание пачки, сформированной источником излучения 1 из пачки, сформированной источником излучения 3, затем вычитание пачки, сформированной источником излучения 2 из пачки, сформированной источником излучения 4. Это значение сохраняется для участия в дальнейшем анализе.

Обработка информации, поступающей с фотоприемника 27 и характеризующие рассеяние излучения пылью, происходит микроконтроллером 24 аналогичным образом: сначала происходит вычитание пачки, сформированной источником излучения 1 из пачки, сформированной источником излучения 3, затем вычитание пачки, сформированной источником излучения 2 из пачки, сформированной источником излучения 4.

Затем берется логарифм суммы полученных значений с обоих фотоприемников, которая характеризует концентрацию измеряемой пыли.

Для определения вещественного состава измеряемой пыли микроконтроллером 24 определяется логарифм отношения пачки, сформированной источником излучения 1, и пачки, сформированной источником излучения 2, поступающего рассеянного излучения под углом 90 градусов относительно оси светоизлучателя на фотоприемник 28, а также логарифм ранее сохраненного выше значения разности пачек с фотоприемника 22. Полученные данные сравниваются со значениями, помещенными в память микроконтроллера 24. Эти значения определяются заранее для частиц разных веществ экспериментально, моделированием или берутся из справочников и они характеризуют вещественный состав измеряемой пыли.

Все операции выполняются синхронно и циклично.

Устройство подогрева смотровых окон 11 поддерживает температуру смотровых окон измерительного канала в пределах 210—250OС. Режим работы данного устройства задается микроконтроллером 24.

Устройство контроля запылённости смотровых окон 12 осуществляет управление устройством обдува 14 со специально-закреплёнными на лопастях вентилятора очищенными щётками, автоматически приближающимися к смотровым окнам при работе вентилятора. При достижении определённого порога концентрации пыли, через линзу поступает отражённый под углом 135 градусов к оси излучения световой луч на устройство 12, представляющее собой фотодиод, напряжение с которого поступает на устройство управления вентилятором 13, режим работы которого задается микроконтроллером 24.

Устройство контроля температуры 25, выполненное в виде полупроводникового датчика температуры и усилителя непрерывно проводит измерения температуры воздуха рабочей зоны и подключается к микроконтроллеру 24 для коррекции колебаний температуры окружающей среды.

Таким образом, предлагаемый способ за счет использования двух длин волн в области максимального и минимального поглощения пыли и использования дополнительного канала, измеряющего рассеяние света от пыли, позволяет повысить точность определения общей концентрации пыли и её вещественного состава, а так же устранить погрешности, возникающие при изменении неконтролируемых параметров: влажности, концентрации углекислого газа, метана и др., что позволяет ему работать в сложных эксплуатационных условиях предприятия.

Способ контроля запыленности, в котором последовательно генерируются импульсы светового излучения на длинах волн в области максимального и минимального поглощения пыли и их пропускание через опорный и измерительный канал, на выходе которых измеряется ослабление излучения, по которому судят о концентрации пыли, при этом в измерительном канале нагреваются смотровые окна, контролируется их запыленность и осуществляется их автоматическая очистка, а также измеряется температура окружающей среды, отличающийся тем, что дополнительно в измерительном канале регистрируется рассеянное на двух длинах волн излучение под углом 90° к оси падающего излучения, затем определяются логарифмы отношения полученных пар сигналов, которые сравниваются со значениями, помещенными в память микроконтроллера.



 

Похожие патенты:

Датчик содержит массив лазеров; массивы коллимирующих и фокусирующих линз, первый и второй массивы фотодетекторов; массив дихроичных зеркал, массив дихроичных фильтров. Каждый лазер из массива лазеров с соответствующими ему фокусирующей и коллимирующей линзами расположены на одной оптической оси, причем оптические оси для разных лазеров параллельны друг другу и образуют первый массив оптических осей.

Изобретение относится к устройству, содержащему интегрированный вычислительный элемент (ICE), расположенный для оптического взаимодействия с электромагнитным излучением от текучей среды и, таким образом, формирования оптически провзаимодействовавшего излучения, соответствующего характеристике текучей среды, и способу использования устройства.

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника, лазерный дальномер, отражатель, ПЗС-матрицу, три аналого-цифровых преобразователя, электровычислительную машину.

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока, преобразование данных потоков в электрические сигналы.

Изобретение относится к области радиоэлектронной техники и касается устройства обнаружения пылеотложения на печатных платах радиоэлектронной аппаратуры. Работа устройства заключается в периодическом излучении световых импульсов светодиодом и приеме этих импульсов, отраженных от контролируемой поверхности, фотодатчиком.

Изобретение относится к изготовлению композитных конструкций, в частности к способам контроля композитных заготовок во время изготовления. Способ контроля композитной заготовки и способ контроля рабочего органа для укладки композитного материала включают: направление на контролируемую поверхность электромагнитного излучения, прием отраженного от каждого участка поверхности ответного сигнала, разделение принятого сигнала на множество длин волн, идентификацию невидимых невооруженным глазом загрязняющих веществ и генерирование изображения поверхности с графическими индикаторами, указывающими на наличие загрязняющих веществ.

Изобретение относится к устройству и способу для определения чистоты проверяемого хладагента. Устройство (10) для определения чистоты проверяемого хладагента содержит газовую кювету (12), которая имеет входной патрубок и выходной патрубок для проверяемого газа, просвечивающий газовую кювету инфракрасный источник (20) и по меньшей мере один регистрирующий проходящее через газовую кювету инфракрасное излучение датчик.

Оптический модуль содержит полупроводниковый элемент (4) с чувствительной к электромагнитному излучению поверхностью и объектив (1) для проецирования электромагнитного излучения на чувствительную поверхность полупроводникового элемента (4). В пространстве между объективом (1) и чувствительной поверхностью полупроводникового элемента (4) размещен дополнительный оптический элемент (11).

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью.

Изобретение относится к области исследования вентиляционного оборудования предприятия для определения наличия пыли. Данное изобретение направлено на повышение точности непрерывного измерения концентрации, а также определение среднего размера частиц пыли в изучаемой среде.

Изобретение относится к технологическому оборудованию для предприятий хранения нефти и нефтепродуктов, в частности к устройствам для получения фактического состава пробы на каждом измеряемом уровне из резервуара, оснащенного понтоном или плавающей крышей, без потерь нефтепродукта. Изобретение касается пробоотборника сниженного для резервуаров с плавающей крышей или понтоном, содержащего несущую коленную штангу, состоящую из верхней и нижней секций, соединенных посредством среднего шарнирного узла, верхний шарнирный узел, предназначенный для крепления к плавающей крыше (понтону) через кронштейн и нижний шарнирный узел, предназначенный для закрепления на стенке резервуара, а также пробозаборные колонны верхнего, среднего и нижнего уровней отбора пробы с верхним, средним и нижним узлами забора пробы соответственно, распределительное устройство, гидравлически связанное с патрубком прокачки, краны забора пробы с нижнего, среднего и верхнего уровней отбора пробы, краны слива и откачки, кран прокачки и насос.
Наверх