Эластичная неармированная мембрана

Изобретение относится к техническим изделиям в области фильтрации растворов и основано на ионообменных смолах и композиционных связующих материалах, в частности к эластичной неармированной мембране. Мембрану получают путем механического смешения расплавов полимеров, измельченной катионообменной смолы и связующего полимера. Причем катионообменную смолу измельчают до фракции 10-63 мкм, а в качестве связующего полимера используется пластифицированный термостабилизированный поливинилхлорид совместно с этилвинилацетатом в соотношении 10:1, где содержание связующего полимера составляет 30-50 мас.%. При этом используют катиониты, имеющие удельный объем 4,0±0,1 см3/г макропористой структуры и 2,8±0,1 см3/г гелевой структуры. Техническим результатом заявленного изобретения является повышение проницаемости ионов и увеличение сроков эксплуатации мембраны. 1 табл., 12 пр.

 

Изобретение относится к области химической, нефтехимической промышленности и направлена на использования в областях разделения примесей в растворах, в том числе водоочистке. Данный метод разделения (электродиализ) основан на водородной связи при электромиграции ионов. Во многих случаях электродиализ с высокой интенсивностью ведут при повышенных плотностях тока. При этом повышенное скопление диффузионной плотности тока на поверхности ионообменного сополимера является причиной генерации водородных и гидроксильных ионов. Помимо электрического воздействия на прочность мембраны существенно влияет процесс набухания в рабочей среде и вибрации при эксплуатации установки. Все это ведет к механическому износу мембраны и нарушению процесса электродиализа.

Аппаратурное оформление электродиализатора для предлагаемой технической модели аналогично патентам RU 23579; 41423; 23578; 69414 и другим электродиализаторам, в которых используются катионообменные мембраны.

Известны композиционные катионообменные мембраны (патент РФ №118213, МПК B01D 71/36 (2006.01), В82В 1/00 (2006.01), опубл. 20.07.2012; патент РФ №2385970, МПК (51) С25В 13/08 (2006.01), С25В 9/00 (2006.01), опубл. 10.04.2010; патент РФ №2352384, МПК (51) B01D 71/00 (2006.01), В82В 1/00 (2006.01), опубл. 20.04.2009). Данные мембраны состоят из сульфированного полимера (сополимера), который наносится на шероховатую или выпуклую поверхность пленки и модифицированы сульфированными или иными подложками. Основной задачей данных мембран является повышение ионного обмена через мембраны. Однако, несмотря на эффективную работу данных мембран, при продолжительной эксплуатации в мембранах нарушается целостность, что приводит к необходимости замены мембраны на новую.

Наиболее близким аналогом является катионообменная мембрана, применяемая в патенте РФ №119340, МПК C02F 1/00 (2006.01), опубл. 20.08.2012, состоящая из катионообменного материала, выполненного в виде ткани. Существенным недостатком аналога является относительно низкая проницаемость ионов при увеличении сроков эксплуатации мембраны за счет утолщения.

Технический результат предлагаемого изобретения достигается тем, что катионообменная мембрана получена путем механического смешения расплавов полимеров: измельченной катионообменной смолы и связующего полимера. В качестве связующего полимера используется пластифицированный поливинилхлорид, совмещенный с этилвинилацетатом (ЭВА).

В отличие от прототипа связующий полимер является более мягким материалом, что позволяет получить эластичную мембрану. Содержанием пластификатора в поливинилхлориде можно регулировать эластичность мембраны. Соотношение пластифицированного ПВХ и ЭВА составляет 10:1.

Достигнутые результаты иллюстрируются следующими примерами:

Пример 1. Катионообменная смола с удельным объемом 4,0±0,1 см3/г, произведенная в макропористом исполнении, высушивается до остаточной влаги 1÷2%масс. и измельчается до фракции 40÷63 мкм. В двухшнековом экструдере с соотношением L/D=50 в первой зоне расплавляется формующий полимер (пластифицированный поливинилхлорид термостабилизированный). Во второй зоне в расплав полимера вводится измельченная катионообменная смола. Во второй и третьей зонах происходит перемешивание компонентов до равномерного состояния. Соотношение формующего полимера к катионообменной смоле 30:70 (масс.). После эктрудирования смешенная масса направлялась на каландрование с последующей конденсацией.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 2. Мембрану получали аналогично примеру 1, но катионообменную смолу измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 1.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 3. Мембрану получали аналогично примеру 1, но катионообменную смолу измельчали до фракции менее 20 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 1.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 4. Мембрану получали аналогично примеру 1, но использовали катионообменную смолу двух видов: макропористую форму с удельным объемом 4,0±0,1 см3/г и гелевую форму с удельным объемом 2,8±0,1 см3/г. Соотношение макропористого катионита к гелевому составлял 50:50 (масс.). Катиониты обоих видов измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 1.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 5. Мембрану получали аналогично примеру 1, но содержание формующего полимера (пластифицированного ПВХ) в конечной мембране составляло 40% (масс.) - соотношение формующего полимера к катионообменной смоле 40:60 (масс.). Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 1.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 6. Мембрану получали аналогично примеру 5, но катионообменную смолу измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 5.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 7. Мембрану получали аналогично примеру 5, но катионообменную смолу измельчали до фракции менее 20 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 5.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 8. Мембрану получали аналогично примеру 5, но использовали катионообменную смолу двух видов: макропористую форму с удельным объемом 4,0±0,1 см3/г и гелевую форму с удельным объемом 2,8±0,1 см3/г. Соотношение макропористого катионита к гелевому составлял 50:50 (масс.). Катиониты обоих видов измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 5.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 9. Мембрану получали аналогично примеру 1, но содержание формующего полимера (пластифицированного ПВХ) в конечной мембране составляло 50% (масс.) - соотношение формующего полимера к катионообменной смоле 50:50 (масс.). Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 1.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 10. Мембрану получали аналогично примеру 9, но катионообменную смолу измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 9.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 11. Мембрану получали аналогично примеру 9, но катионообменную смолу измельчали до фракции менее 20 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 9.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Пример 12. Мембрану получали аналогично примеру 9, но использовали катионообменную смолу двух видов: макропористую форму с удельным объемом 4,0±0,1 см3/г и гелевую форму с удельным объемом 2,8±0,1 см3/г. Соотношение макропористого катионита к гелевому составлял 50:50 (масс.). Катиониты обоих видов измельчали до фракции 20÷40 мкм. Все остальные характеристики сырья, оборудования и режима производства использовали как в примере 9.

Характеристики полученной мембраны показаны в таблице 1. Каждое значение в таблице 1 является среднеарифметическим вычислением результатов испытания пяти анализируемых образцов каждой мембраны.

Эластичная неармированная мембрана, полученная путем механического смешения расплавов полимеров: измельченной катионообменной смолы и связующего полимера, отличающаяся тем, что катионообменную смолу измельчают до фракции 10-63 мкм, а в качестве связующего полимера используется пластифицированный термостабилизированный поливинилхлорид совместно с этилвинилацетатом в соотношении 10:1, где содержание связующего полимера составляет 30-50 мас.%, при этом используют катиониты, имеющие удельный объем 4,0±0,1 см3/г макропористой структуры и 2,8±0,1 см3/г гелевой структуры.



 

Похожие патенты:

Изобретение относится к области получения широковостребованных мономеров для производства синтетических каучуков и, более конкретно, к способу получения α-метилстирола путем дегидрирования кумола. Предложен способ получения пористого керамического каталитического конвертера путем самораспространяющегося высокотемпературного синтеза из алюмосодержащей шихты, содержащей мас.%: α-Аl2О3 - 85-95; MgO - 1-5; SiC - 5-9, с формованием пористой керамической трубки, в котором на поверхности трубки золь-гель методом формируют дополнительный промежуточный слой γ-Аl2О3, после чего наносят каталитически активные компоненты, последовательно пропитывая поверхность трубки водными растворами карбоната калия и нитрата церия, а затем раздельно наносят водно-спиртовые растворы комплексов NBu4ReO4 и (NH4)6W12O39⋅H2O, и прокаливают трубку в токе воздуха ступенчато увеличивая температуру с получением каталитического конвертера дегидрирования этилбензола в α-метилстирол.

Изобретение относится к области получения широко востребованных мономеров для производства синтетических каучуков, и более конкретно к способу получения стирола путем дегидрирования этилбензола. Предложен способ получения пористого керамического каталитического конвертера путем самораспространяющегося высокотемпературного синтеза из алюмосодержащей шихты, содержащей мас.%: α-Al2O3 - 85-95; MgO - 1-5; SiC - 5-9, с формованием пористой керамической трубки, в котором на поверхности трубки золь-гель методом формируют дополнительный промежуточный слой γ-Al2O3, после чего наносят каталитически активные компоненты, последовательно пропитывая поверхность трубки водными растворами карбоната калия и нитрата церия, а затем раздельно наносят водно-спиртовые растворы комплексов NBu4ReO4 и (NH4)6W12O39⋅H2O, и прокаливают трубку в токе воздуха ступенчато увеличивая температуру с получением каталитического конвертера дегидрирования этилбензола в стирол.

Настоящее изобретение относится к разделительной мембране медицинского назначения, а также к устройству для очистки крови, включающему разделительную мембрану медицинского назначения. Указанная разделительная мембрана представляет собой мембрану, в которой материал медицинского назначения связан или соединен с поверхностью мембраны, включающей гидрофобный полимер.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении водонепроницаемых и высоковоздухопроницаемых мембран для текстильных материалов, барьерных мембран для воды, в мобильных телефонах и портативных электронных устройствах, фильтров и газоразделительных мембран. Сначала выбирают каталитически активный субстрат (1) из Cu, Ni, Pt, Ru, Ir, Rh или их комбинации.

Изобретение относится к способу и устройству для разделения газовых смесей посредством газоразделительных мембран. Способ и устройство состоят из ступени (1) разделения исходного потока и ступени (2) разделения ретентата, обе из которых представляют собой ступени мембранного разделения, причем первый поток (7) ретентата перед его вводом в ступень (2) разделения ретентата нагревают до температуры, превышающей температуру исходного потока (5), а общая производительность мембран, используемых на ступени (2) разделения ретентата, выше общей производительности мембран, используемых на ступени (1) разделения исходного потока.

Изобретение относится к нанотехнологии и мембранной технологии. Композиционная мембрана включает нанопористую подложку и нанесённый на неё селективный слой толщиной 20-200 нм, содержащий нанолисты оксида графена, интеркалированного фуллеренолами С60(ОН)n или С70(ОН)n, где n=10-40, равномерно распределенными между нанолистами оксида графена.

Изобретение относится к установкам для разделения и концентрирования жидких сред и может найти применение при изготовлении устройств с использованием полупроницаемых мембран для удаления механических, коллоидных и растворенных включений размером 0,1 мкм и выше, в том числе для химической, биотехнической промышленности, а также в системах водоочистки, фармацевтике.

Изобретение относится к установкам для разделения и концентрирования жидких сред и может найти применение при изготовлении устройств с использованием полупроницаемых мембран для удаления механических, коллоидных и растворенных включений размером 0,1 мкм и выше, в том числе, для химической, биотехнической промышленности, а также в системах водоочистки, фармацевтике.

Изобретение относится к технической области фильтрующих элементов. Способ изготовления мембраны для тангенциальной фильтрации текучей среды, при этом указанная мембрана содержит: подложку, имеющую трехмерную структуру и образованную монолитным керамическим пористым телом, в котором выполнены пути для циркуляции фильтруемой текучей среды и разделительный фильтрующий слой, нанесенный на стенку циркуляционных путей, в котором трехмерную структуру подложки получают посредством аддитивной технологии, согласно которой трехмерную структуру подложки рассекают на участки при помощи программы компьютерного проектирования, при этом указанные участки создают поочередно в форме элементарных пластов, расположенных друг над другом и последовательно связанных между собой, при помощи повторения следующих двух этапов, на которых: а) наносят однородный сплошной слой порошка постоянной толщины, предназначенного для формирования керамического пористого тела на площади, превышающей рисунок сечения указанного формируемого пористого тела на уровне пласта; b) в соответствии с рисунком, определенным для каждого пласта, локально уплотняют часть нанесенного материала для создания элементарного пласта, при этом указанные два этапа повторяют для того, чтобы при каждом повторении одновременно связывать сформированный таким образом элементарный пласт с предыдущим пластом, постепенно наращивая требуемую трехмерную форму.
Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии цеолита и последующую термообработку, отличающийся тем, что получение пористой керамической подложки включает формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя, в качестве которого используют сверхвысокомолекулярный полиэтилен (СВМПЭ), канифоль или парафин, взятых соответственно в соотношении, % масс.: 85:15-25:75, с градиентной пористостью от 15% до 60% по толщине подложки, затем наносят на поверхность подложки со стороны максимальной пористости, по крайней мере, один слой суспензии цеолита и проводят термообработку в интервале температур от 1000 до 1500°C.
Изобретение относится к производству печатных плат. Предложен способ обработки раствора подтравливания печатных плат, содержащего 200-250 г/л персульфата аммония, 10-20 г/л серной кислоты и ионы меди, включающий электрохимическую обработку раствора подтравливания в трехкамерном электролизере с двумя катионообменными мембранами с использованием катода из нержавеющей стали и анода из платинированного титана, при которой раствор подтравливания находится в средней камере электролизера.
Наверх