Система для проведения процесса химического осаждения из паров летучих прекурсоров

Изобретение может быть использовано при изготовлении качественных тонких покрытий, в частности оксидных. Система для химического осаждения из паров летучих прекурсоров содержит реакционную камеру 1 в виде вертикально ориентированного цилиндра, карусельный подложкодержатель 2, модуль подачи реакционных газов и модуль подачи ионизированных газов, предназначенный для очистки и активации поверхности подложек, нагреватель и средства вакуумной откачки. Модуль подачи реакционных газов включает газораспределяющее устройство 3, выполненное в виде душевой насадки, сообщённой с линиями 4 и 5, предназначенными, соответственно, для подачи реакционных газов и окисителя. Душевая насадка установлена с возможностью перемещения вдоль вертикальной оси реакционной камеры 1 при помощи, по меньшей мере, одного линейного актуатора 6, пластины 7 и сильфона 8. Карусельный подложкодержатель 2 выполнен в виде вращающихся вокруг собственной оси дискового основания 9 и размещённых на его поверхности дисковых платформ 10, в которых выполнены углубления для установки подложек. Модуль подачи ионизированных газов включает сопряжённый с реакционной камерой 1 и отделённый от нее герметичным люком 15 герметичный отсек 12, внутри которого установлен ионный источник 13 со средствами подвода ионизируемых газов, выполненный с возможностью перемещения в рабочее пространство реакционной камеры 1 по рельсам 17 и предназначенный для предварительной очистки и/или активации поверхности подложек. Нагреватель представляет собой термокабель, подведённый к подложкодержателю и размещённый в канавках, выполненных в дисковых платформах 10. Повышается производительность системы, обеспечивается получение качественных равномерных покрытий. 6 з.п. ф-лы, 3 ил.

 

ОБЛАСТЬ ТЕХНИКИ.

Изобретение относится к области осаждения покрытий газофазным методом, при котором тонкий слой материала формируется на поверхности подложки. Изобретение может быть использовано в областях техники, требующих качественных тонких покрытий, в частности оксидных.

УРОВЕНЬ ТЕХНИКИ.

Под химическим осаждением покрытий из паров летучих прекурсоров понимается метод химического осаждения путем окислительного/термического разложения при повышенной температуре летучих соединений для получения покрытия. В процессе химического осаждения из паров летучих прекурсоров подложка помещается в пары одного или нескольких веществ, которые, разлагаясь при повышенной температуре, образуют на поверхности подложки необходимое вещество. Также образуется газообразный продукт реакции, выносимый из камеры с потоком газа.

В большинстве случаев в качестве исходных соединений - прекурсоров используют летучие карбонилы, галогениды, гидриды или металлоорганические комплексы металлов.

Летучие прекурсоры при этом могут находиться в твердом, жидком или газообразном состоянии. («Методы получения и анализа неорганических материалов» Химическое осаждение пленок простых и сложных оксидов из паров металлорганических соединений, д.х.н. Кузьмина Н.П, к.х.н. Котова О.В., М., МГУ, 2011 г.).

Для качественного нанесения покрытий подложка проходит предварительную обработку, например, для очистки поверхности, ее активации для улучшения адгезии осаждаемых веществ и пр.

Как правило, такую предварительную обработку проводят с использованием источника ионов.

В предшествующем уровне техники раскрываются технические решения, относящиеся к системам для проведения процесса химического осаждения, в которых можно провести как предварительную обработку поверхности подложки, так и химическое осаждение покрытия из паров металлорганических прекурсоров.

В патенте RU 2727634 раскрывается устройство для обработки подложек осаждением и/или очисткой, содержащее наружную камеру, реакционную камеру внутри наружной камеры с образованием двухкамерной конструкции и линию подачи химически неактивного газа или прекурсора в реакционную камеру, отличающееся тем, что оно содержит нагреватель, расположенный внутри наружной камеры за пределами реакционной камеры, трубку для подачи радикала и выпускную линию, расположенную под реакционной камерой, при этом реакционная камера выполнена с возможностью перемещения между положением обработки и нижним положением внутри наружной камеры, при котором формируется отверстие загрузки по меньшей мере одной подложки в реакционную камеру между ее боковой стенкой и трубкой для подачи радикалов. Как следует из описания известного устройства, при реализации изобретения обеспечивается улучшение возможности загрузки и выгрузки подложек и минимизация или устранение генерирования частиц из деталей упомянутого устройства, не являющихся подложкой. Под подложкой здесь и далее понимается поверхность, на которую осуществляется химическое осаждение - покрытия из газовой/паровой фазы.

Однако, известное устройство обладает следующими недостатками. Как показано на схемах известного устройства, нагревательный элемент располагается лишь с одной стороны от реакционной камеры. Кроме того, при подобной конструкции реакционной камеры весьма непросто организовать вращение держателя подложки вокруг своей оси, что является довольно важным фактором при получении равномерного покрытия. Также в известном устройстве не предусмотрено газораспределительное устройство, которое формировало бы равномерный поток, направленный на подложку, что затруднит осаждение равномерных покрытий на подложки большой площади.

Таким образом, техническое решение по патенту RU 2727634 не позволяет получить равномерные покрытия на большой площади обрабатываемых подложек. Наиболее близкое техническое решение раскрывается в описании к заявке на изобретение US 2014272187. Как следует из описания к данной заявке (см. [018]-[023]), установка включает реакционную камеру для химического осаждения одной или нескольких пленок на подложку. Камера включает стенки, дно и душевую насадку газораспределяющего устройства, которые определяют рабочий объем камеры, при этом душевая насадка прикреплена с помощью подвески к опорной пластине, являющейся верхней стенкой реакционной камеры. Подложки, на которые наносится покрытие, размещены на держателе, который также расположен в рабочем объеме, доступ к нему осуществляется через отверстие щелевого клапана, так что подложка может перемещаться в камеру и из нее. Держатель также может перемещаться в вертикальном направлении (подниматься и опускаться) посредством привода. К держателю подключены нагревательные и/или охлаждающие элементы для поддержания заданной температуры.

Источник газа находится вне камеры и подведен к душевой насадке посредством трубопровода. Непосредственно в душевую насадку газ поступает через газовые проходы, размещенные в опорной пластине, а из душевой насадки газ поступает в зону обработки, размещенную в камере между насадкой душевой насадкой и подложкой. К реакционной камере подсоединен вакуумный насос для регулирования давления рабочего объема камеры.

Установка снабжена источником высокочастотного тока, присоединенным через сеть к опорной плите, а также удаленным источником плазмы, в который может подаваться очищающий газ для генерирования плазмы. Установка позволяет провести процесс химического осаждения из газовой/паровой фазы в следующей последовательности: позиционирование подложки в реакционной камере, формирования чистящей и/или адгезионной плазмы из соответствующего газа, доставку чистящей/адгезионной плазмы к подложке, очистку подложки и/или формирование на подложке адгезионного слоя и химическое осаждение на подложке покрытия.

В качестве недостатков данного устройства можно выделить следующее. Подвижность держателя подложки в вертикальном направлении приводит к трудностям с организацией его вращения вокруг собственной оси, в связи чем могут возникать проблемы с осаждением равномерных покрытий на подложки большой площади, а также может привести к сложностям с организацией его равномерного прогрева и его поддержанием с течением времени - вследствие многочисленных возвратно-поступательных перемещений, нагревательные провода, используемые для нагрева, будут смещаться из своего изначального положения, изменяя температурный профиль на поверхности держателя. Это, в свою очередь, опять же приведет к неравномерности получаемого покрытия. Указанные недостатки могут представлять определенные технические проблемы при реализации известного технического решения.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ.

Задачей изобретения является устранение данных технических проблем, а именно, улучшение равномерности получаемых покрытий, а также повышение производительности работы системы.

Поставленная задача решается системой для химического осаждения из паров летучих прекурсоров, содержащей реакционную камеру, карусельный подложкодержатель, модуль подачи реакционных газов, модуль подачи ионизированных газов, нагреватель и средства вакуумной откачки, в которой модуль подачи реакционных газов, включает газораспределяющее устройство, выполненное в виде душевой насадки со средствами подвода к ней реакционных газов, причем душевая насадка установлена в верхней части реакционной камеры с возможностью ее перемещения вдоль вертикальной оси камеры, карусельный подложкодержатель установлен в нижней части реакционной камеры с образованием между упомянутым подложкодержателем и душевой насадкой рабочего пространства, а модуль подачи ионизированных газов включает герметичный отсек с установленным внутри отсека ионным источником со средствами подвода ионизируемых газов, где упомянутый источник установлен с возможностью перемещения из отсека в рабочее пространство реакционной камеры, при этом отсек сопряжен с реакционной камерой и отделен от нее герметичным люком.

В частных воплощениях системы поставленная задача решается тем, что карусельный подложкодержатель выполнен в виде дискового основания, на поверхности которого размещены несколько дисковых платформ, где дисковое основание и дисковые платформы выполнены с возможностью вращения вокруг собственной оси.

В других воплощениях системы в дисковых платформах выполнены углубления для установки подложек.

Нагреватель в системе может быть выполнен в виде термокабеля, подведенного к подложкодержателю.

В этом случае целесообразно разместить термокабель в канавках, выполненных в дисковых платформах.

В иных воплощениях системы реакционная камера может быть выполнена в виде вертикально ориентированного цилиндра.

Источник ионов может включать электроды, установленные с образованием разрядного пространства между ними, при этом, средства подвода ионизируемых газов выведены в разрядное пространство.

Душевая насадка заявленной системы может быть снабжена по меньшей мере, одним линейным актуатором.

Сущность изобретения состоит в следующем.

На фиг. 1 приведено схематическое изображение, иллюстрирующее работу заявленной системы для химического осаждения из паров летучих прекурсоров с нижним положением газораспределяющего устройства.

На фиг. 2 приведено схематическое изображение подложкодержателя.

На фиг. 3 приведено схематическое изображение, иллюстрирующее работу заявленной системы для химического осаждения из паров летучих прекурсоров с верхним положением газораспределя ющего устройства.

Позиции на чертежах означают следующее.

1. Реакционная камера

2. Карусельный подложкодержатель

3. Газораспределяющее устройство в виде душевой насадки

4. Линия подачи реакционного газа

5. Линия подачи окислителя

6. Линейный актуатор

7. Опорная пластина

8. Вакуумный сильфон

9. Дисковое основание подложкодержателя

10. Дисковая плоская платформа

11. Углубления.

12. Герметичный отсек

13. Ионный источник

14. Турбомолекулярный насос

15. Герметичный люк

16. Пневматический привод

17. Рельсы.

Сущность предлагаемого изобретения поясняется с помощью фиг. 1-3. Система для химического осаждения из паров металлорганических прекурсоров включает реакционную камеру (1) с карусельным подложкодержателем (2), модуль подачи реакционных газов, модуль подачи ионизированных газов, нагреватель и средства вакуумной откачки.

Модуль подачи реакционных газов включает газораспределяющее устройство, выполненное в виде душевой насадки (3) с линией подачи к ней паров прекурсора (4) и, при необходимости, линией подачи вспомогательного газа, например, окислителя (5) (см. фиг. 1).

Душевая насадка (3) установлена в верхней части реакционной камеры. Насадка выполнена с возможностью ее перемещения вдоль вертикальной оси камеры. Такая возможность может быть обеспечена при помощи линейных актуаторов (6), опорной пластины (7) и сильфона (8). Достоинством газораспределяющего устройства (3) является то, что потоки реакционных газов - паров прекурсора с носителем и газа-окислителя, проходя по горячим линиям (4, 5), смешиваются непосредственное крышке душа (3), что предотвращает преждевременное окисление прекурсора в газовой фазе и обеспечивает его равномерную доставку к покрываемой поверхности.

Для размещения подложек в заявленной системе используется карусельный подложкодержатель (2). Под «каруселью» 8 уровне техники понимается механизм, перемещающий предметы по замкнутой траектории. Карусельный подложкодержатель (2) (фиг. 2) установлен в нижней части реакционной камеры (1) и вместе с душевой насадкой (3) образует рабочее пространство реакционной камеры.

Карусельный подложкодержатель (2) обеспечивает вращение дисковых платформ (10) вокруг двух осей, что необходимо для получения равномерного покрытия всей площади подложек.

Карусельный подложкодержатель (2) в некоторых воплощениях изобретения может включать дисковое основание (9), на котором установлены дисковые плоские платформы (10) в виде дисков меньшего размера. На верхней пластине каждой дисковой платформы (10) могут быть размещены углубления (11), в которых можно одновременно закрепить несколько подложек. Внутри платформ (10) может быть размещена сеть кольцевых каналов (не показаны), в которых, соответственно, может быть размещен нагревательный провод (не показан). Такое размещение нагревателя не является исчерпывающим, он может нагреть подложку и иным образом.

Модуль подачи ионизированных газов (фиг. 1 и 3) включает герметичный отсек (12) с установленным внутри отсека ионным источником (13). Герметичный отсек снабжен системой насосов для откачки воздуха - форвакуумным (не показан) и турбомолекулярным насосом (14).

Функцией ионного источника (13) является предварительная очистка и/или активация поверхности подложек под последующее осаждение покрытия. Ионный источник (13) установлен с возможностью перемещения из отсека в рабочее пространство реакционной камеры (1), при этом отсек (13) сопряжен с реакционной камерой (1) и отделен от нее герметичным люком (15).

Герметичный люк поднимается и опускается посредством пневматического привода (16). Под ионным источником в уровне техники понимается устройство для получения направленных потоков ионов. Ионный источник (13) может состоять из анода и катода, между которыми в скрещенных электрическом и магнитном полях возникает разряд. В пространство между электродами доставляют ионизирующийся газ, при этом разряд инициирует отбор и ускорение ионов из доставляемого газа.

Ионный источник (13) устанавливают в герметичном отсеке (12) на рельсы (17) и при открытом посредством пневматического привода (16) герметичном люке (15) перемещаютв рабочее пространство реакционной камеры (1) для предварительной очистки и/или активации поверхности подложек под последующее осаждение покрытия.

Изобретение осуществляется следующим образом.

Перед началом процесса осаждения реакционную камеру (1) откачивали до остаточного давления порядка сотых долей миллибара, а подложки, размещенные подложкодержателе (2) разогревали посредством нагревательного кабеля, размещенного в платформах (10) до заданной температуры.

На фиг. 3 проиллюстрирована система, подготовленная для проведения очистки подложек с помощью ионного источника: газораспределяющее устройство (3) посредством актуаторов (6), связанных с опорной пластиной (7) и вакуумным сильфоном (8) отведено от подложкодержателя (2) на максимальное расстояние и находится в верхней крайней позиции. Герметичный люк (15), отделяющий герметичный отсек (12) с ионным источником (13) от реакционной камеры при помощи пневматического привода (16), отведен вверх, проход между камерой (1) и отсеком (12) открыт и источник (13) перемещен по рельсам (17) в рабочий объем реакционный объем камеры (1). Во всей системе с помощью турбомолекулярного насоса (14), установленного в отсеке (12) с ионным источником (13), дополнительно создано разрежение до остаточного давления 105 миллибара для обеспечения рабочих условий для ионного травления.

В качестве карусельного подложкодержателя (2) для данного воплощения изобретения использовали основание (9) стремя дисковыми платформами (10). В каждой платформе было выполнено по три углубления (11), в каждом углублении были размещены по три подложки, каждая диаметром по 2 дюйма (5,08 см). Запускали вращение карусельного подложкодержателя (2) и начинали бомбардировку поверхности подложек потоком ионов кислорода и аргона.

После завершения процесса очистки и химической активации поверхности подложек ионным пучком проводилось химическое осаждение покрытий.

На фиг. 1 проиллюстрирована система, подготовленная для проведения химического осаждения: ионный источник (13) выключен и отведен в отсек (12), проход между камерой (1) и отсеком (12) перекрыт герметичным люком, газораспределяющее устройство (3) перемещено в вертикальном направлении (вдоль вертикальной оси камеры) к подложкодержателю (2) и запущены потоки газов - подача паров летучего прекурсора с носителем по линии (4) и окислителя по линии (5).

Далее проводилось химическое осаждение: на полупроводниковые подложки, изготовленные из оксида алюминия со структурой сапфира, наносили покрытие из диоксида ванадия, допированного оксидом титана с различной степенью замещения. Для этого в качестве летучего прекурсора использовали дипивалоилметанат ванадила в виде твердого порошка. В качестве газа-носителя использовали аргон, в качестве окислителя - кислород. Получали однородные покрытия диоксида ванадия. Толщина полученного покрытия измерялась с помощью атомно-силовой микроскопии, при средней величине 150 нм разброс составил 7%. Полученное покрытие обладало узким распределением зерен по размерам и равномерным химическим составом, что косвенно подтверждалось большой величиной перепада и узостью гистерезиса на температурной зависимости сопротивления покрытия.

Как следует из представленных материалов, заявленная система для химического осаждения из паров летучих прекурсоров позволяет легко, просто и компактно провести в одном устройстве как процесс предварительной очистки/активирования поверхности подложек перед осаждением, так и само осаждение покрытия, что свидетельствует о лучшей производительности заявленного устройства, а также позволяет получить качественные равномерные покрытия всей площади подложек на большом количестве подложек одновременно.

1. Система для химического осаждения из паров летучих прекурсоров, содержащая реакционную камеру, карусельный подложкодержатель, модуль подачи реакционных газов, модуль подачи ионизированных газов для очистки и активации поверхности подложек, нагреватель и средства вакуумной откачки, в которой модуль подачи реакционных газов включает газораспределяющее устройство, выполненное в виде душевой насадки со средствами подвода к ней реакционных газов, причем душевая насадка установлена в верхней части реакционной камеры с возможностью ее перемещения вдоль вертикальной оси камеры, карусельный подложкодержатель установлен в нижней части реакционной камеры с образованием между упомянутым подложкодержателем и душевой насадкой рабочего пространства, а модуль подачи ионизированных газов включает герметичный отсек с установленным внутри отсека ионным источником со средствами подвода ионизируемых газов, где упомянутый источник установлен с возможностью перемещения из отсека в рабочее пространство реакционной камеры, при этом отсек сопряжен с реакционной камерой и отделен от нее герметичным люком, а карусельный подложкодержатель выполнен в виде дискового основания, на поверхности которого размещены несколько дисковых платформ, где дисковое основание и дисковые платформы выполнены с возможностью вращения вокруг собственной оси.

2. Система по п. 1, в которой в дисковых платформах выполнены углубления для установки подложек.

3. Система по п. 1, в которой нагреватель выполнен в виде термокабеля, подведенного к подложкодержателю.

4. Система по п. 3, в которой термокабель размещен в канавках, выполненных в дисковых платформах.

5. Система по п. 1, в которой реакционная камера выполнена в виде вертикально ориентированного цилиндра.

6. Система по п. 1, в которой источник ионов включает электроды, установленные с образованием разрядного пространства между ними, при этом средства подвода ионизируемых газов выведены в разрядное пространство.

7. Система по п. 1, в которой душевая насадка снабжена, по меньшей мере, одним линейным актуатором.



 

Похожие патенты:

Изобретение относится к области оборудования полупроводникового производства и может быть использовано для формирования структур датчиков физических величин и преобразователей энергии бета-излучения в электрическую форму. CVD-реактор синтеза гетероэпитаксиальных пленок карбида кремния на кремниевых подложках путем химического осаждения из газовой фазы включает внутреннюю кварцевую трубу 1 с коаксиально установленной кварцевой наружной трубой 8, с размещенным внутри двухзонным, выполненным из графита, покрытого карбидом кремния, контейнером 2 с подложкодержателями 4, нагревателем 20 индукционного типа и системой 16, 15 подвода/отвода водорода в качестве газа-носителя, при этом контейнер 2 установлен на полом пьедестале 6, направляющем поток водорода в первую зону, между контейнером 2 и пьедесталом 6 установлена разогреваемая ВЧ-полем индуктора металлическая пластина-диск 7 с отверстиями для прохода потока водорода, первая зона указанного контейнера 2 по ходу газа-носителя включает основание 3 в качестве источника углерода, выполнена без тепловых экранов и предназначена для предварительного подогрева водорода и протекания реакции углерода с водородом в сквозных каналах основания 3 с последующим транспортным переносом полученных газообразных углеводородов во вторую зону, включающую сборку подложкодержателей 4 с подложками и тепловыми экранами 5, причем обе зоны сообщаются между собой отверстиями для переноса углеводородов потоком водорода над кремниевыми подложками.

Изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит основу и покрытие, причем покрытие содержит многослойную систему, состоящую из чередующихся подслоев κ–Al2O3 и подслоев TiN, TiC, TiCN, TiCO или TiCNO, причем упомянутая многослойная система содержит по меньшей мере три подслоя κ–Al2O3 и проявляет рентгенодифрактограмму в диапазоне углов сканирования θ–2θ 15–140°, на которой дифракционный пик 002 (площадь пика) является самым сильным пиком, относящимся к подслоям κ–Al2O3 многослойной системы.

Изобретение относится к режущему инструменту с покрытием, включающему основу и покрытие, причем покрытие содержит многослойную систему α-Al2O3, состоящую из чередующихся подслоев α-Al2O3 и подслоев TiCO, TiCNO, AlTiCO или AlTiCNO, упомянутая многослойная система α-Al2O3 содержит по меньшей мере 5 подслоев α-Al2O3, полная толщина упомянутой многослойной системы α-Al2O3 составляет 1-15 мкм, период многослойной системы α–Al2O3 составляет 50-900 нм, при этом режущий инструмент с покрытием дополнительно содержит первый слой α-Al2O3, находящийся между основой и многослойной системой α-Al2O3, в непосредственном контакте с многослойной системой α-Al2O3, причем толщина упомянутого слоя α-Al2O3 составляет < 1 мкм, и многослойная система α-Al2O3 проявляет рентгенодифрактограмму в диапазоне углов сканирования θ-2θ 20°-140°, на которой отношение интенсивности дифракционного пика 0012 (площади пика), I(0012), к интенсивностям дифракционного пика 113 (площади пика), I(113), дифракционного пика 116 (площади пика), I(116), и дифракционного пика 024 (площади пика), I(024), составляет I(0012)/I(113) > 1, I(0012)/I(116) > 1 и I(0012)/I(024) > 1.

Изобретение относится к технологии выращивания эпитаксиального 3C-SiC на ориентированном монокристаллическом кремнии. Способ включает предоставление монокристаллической кремниевой подложки 2, имеющей диаметр по меньшей мере 100 мм, в реакторе 7 химического осаждения из газовой фазы с холодными стенками, содержащем кварцевую камеру; нагревание подложки до температуры, равной или большей чем 700°C и равной или меньшей чем 1200°C, с использованием внешних нагревателей 9, которые представляют собой инфракрасные лампы; введение газовой смеси 33 в реактор, тогда как подложка находится при данной температуре, причем газовая смесь содержит прекурсор 16 источника кремния, прекурсор 18 источника углерода, который отличается от прекурсора 16 источника кремния, и несущий газ 20, таким образом, чтобы осадить эпитаксиальный слой 3C-SiC на монокристаллический кремний, при этом прекурсор 16 источника кремния содержит силан или содержащий хлор силан, а прекурсор 18 источника углерода содержит содержащий метил силан.

Изобретение относится к способу управления температурным режимом роста алмазной пленки на поверхности по меньшей мере одной подложки из твердого сплава. Основную проводящую платформу размещают в герметичной осесимметричной вакуумной камере СВЧ плазменного реактора с однородным температурным полем, при этом центральную часть упомянутой камеры выполняют в виде СВЧ резонатора.

Изобретение относится к способу изготовления структурного покрытия на подложке для защиты подложки от короткого замыкания. Первый диэлектрический слой осаждают на подложке путем мокрого осаждения.

Изобретение относится к производящей углеродные нанотрубки системе, содержащей предварительную выращивающую трубу для начальной предварительной реакции исходных материалов перед получением углеродных нанотрубок; атомизатор для атомизации исходных материалов углеродных нанотрубок и последующего распыления атомизированных исходных материалов в предварительную выращивающую трубу; при этом атомизатор присутствует на переднем конце предварительной выращивающей трубы и имеет распылительную выпускную трубу, которая проходит в предварительную выращивающую трубу; выращивающую трубу для производства углеродных нанотрубок и непрерывного выращивания производимых углеродных нанотрубок; при этом передний конец выращивающей трубы герметично присоединяется к заднему концу предварительной выращивающей трубы; и генератор воздушной завесы для образования воздушной завесы, окружающей атомизирующий воздушный поток вокруг выпуска распылительной выпускной трубы, причем воздушная завеса проходит параллельно по отношению к направлению продолжения предварительной выращивающей трубы; и при этом генератор воздушной завесы находится внутри предварительной выращивающей трубы.

Изобретение относится к снабженному покрытием режущему инструменту для механической обработки металлов: для токарной обработки, фрезерования или сверления металлического материала: легированной, углеродистой или труднообрабатываемой твердой стали. Режущий инструмент содержит подложку, покрытую многослойным износостойким покрытием, включающим в себя слой альфа–Al2O3 и слой карбонитрида титана TixCyN1–y с 0,85≤x≤1,3, предпочтительно 1,1≤x≤1,3 и 0,4≤y≤0,85, осажденный на слой альфа–Al2O3, причем TixCyN1–y имеет коэффициент текстуры TC(hkl), равный или более 3.

Изобретение относится к технологии получения подложки из поликристаллического карбида кремния. Способ состоит из этапов предоставления покрывающих слоев 1b, каждый из которых содержит оксид кремния, нитрид кремния, карбонитрид кремния или силицид металла, выбранного из группы, состоящей из никеля, кобальта, молибдена и вольфрама, или покрывающих слоев, каждый из которых изготовлен из фосфоросиликатного стекла (PSG) или борофосфоросиликатного стекла (BPSG), имеющего свойства текучести допированного P2O5 или B2O3 и P2O5, на обеих поверхностях основной подложки 1a, изготовленной из углерода, кремния или карбида кремния для подготовки поддерживающей подложки 1, имеющей покрывающие слои, каждый из которых имеет гладкую поверхность; формирования пленок 10 поликристаллического карбида кремния на обеих поверхностях поддерживающей подложки 1 осаждением из газовой фазы или выращиванием из жидкой фазы; и химического удаления, по меньшей мере, покрывающих слоев 1b в поддерживающей подложке для отделения пленок поликристаллического карбида кремния 10a, 10b от поддерживающей подложки 1 в состоянии отображения гладкости поверхностей покрывающих слоев 1b на поверхности пленок поликристаллического карбида кремния 10a, 10b, и получения пленок поликристаллического карбида кремния 10a, 10b в качестве подложек из поликристаллического карбида кремния.

Группа изобретений относится к композитной панели с функциональным элементом с электрически управляемыми оптическими свойствами, способу ее изготовления и применению в транспортных средствах и строительстве. Композитная панель 100 содержит последовательность укладки из внешней панели 1, первого промежуточного слоя 3a, второго промежуточного слоя 3b и внутренней панели 2.

Изобретение относится к способу управления температурным режимом роста алмазной пленки на поверхности по меньшей мере одной подложки из твердого сплава. Основную проводящую платформу размещают в герметичной осесимметричной вакуумной камере СВЧ плазменного реактора с однородным температурным полем, при этом центральную часть упомянутой камеры выполняют в виде СВЧ резонатора.
Наверх