Способ локальной радионавигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем

Изобретение относится к области радионавигации в условиях радиоэлектронной борьбы и может быть использовано при разработке системы локальной радионавигации (ЛРН) по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем (ГНСС). Целью изобретения является реализация функции альтернативного координатно-временного обеспечения санкционированных потребителей (СП) по сигналам несинхронизированных отечественных средств радиоэлектронного подавления ГНСС. Сущность изобретения заключается в формировании альтернативного координатно-временного обеспечения для СП в отсутствии синхронизации станций преднамеренных радиопомех между собой и с НАСП. Технический результат обеспечивается настройкой НАСП в режимах «Подготовка» (ввод исходной информации в НАСП), «Синхронизация» (приём радиопомех в точке начальной синхронизации, расчёт поправок на рассинхронизм и координат НАСП, оценка качества начальной синхронизации), «Навигация» (приём радиопомех в произвольной точке, измерение значений задержек, расчёт текущих собственных координат НАСП). 4 ил.

 

Изобретение относится к областям радионавигации в условиях радиоэлектронной борьбы и может быть использовано при разработке системы локальной радионавигации (ЛРН) по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем (ГНСС).

Известен способ локальной радионавигации, реализованный в пространственно распределенной системе радиоподавления навигационной аппаратуры потребителей (НАП) ГНСС с функцией альтернативного координатно-временного обеспечения для санкционированных потребителей, состоящей из станций создания преднамеренных радиопомех, имеющих устройство создания радиопомех с функцией формирования координатно-временного сигнала, и санкционированных потребителей, имеющих НАП, обеспечивающую прием сигнала ГНСС и альтернативного координатно-временного сигнала от станций создания преднамеренных радиопомех (патент RU № 2649407, С1, МПК H04К 3/00, опубл. 03.04.2018 г.). Приемоизмеритель НАП санкционированного потребителя с использованием альтернативного координатно-временного обеспечения, реализуемого пространственно распределенной системой радиопомех, на основе полученных в результате обработки каждого из принятых сигналов данных о привязанных к шкале единого времени, декларированном кодограммой навигационного сообщения, моменте начала передачи, измеренном моменте начала приема кодограммы навигационного сообщения и координатах источника - средства создания радиопомех с функцией формирования и передачи альтернативного навигационного сигнала излучаемых станциями, определяет с использованием канонического дальномерного метода позиционирования (достаточно двух источников альтернативных навигационных сигналов) или разностно-дальномерного метода позиционирования (необходимо не менее трех источников альтернативных навигационных сигналов) планарные координаты объекта - носителя комплексной многоканальной аппаратуры потребителей, а по двум смежным навигационным определениям - курсовой угол и модуль вектора скорости объекта носителя.

Недостатком этого способа является то, что для реализации функции альтернативного координатно-временного обеспечения навигационной аппаратуры санкционированных потребителей (НАСП) необходимо обеспечить привязку к шкале единого времени моментов начала передачи кодограмм навигационных сообщений от станций создания преднамеренных радиопомех и моментов начала приема НАСП кодограмм навигационных сообщений от станций создания преднамеренных радиопомех, т.е. обеспечить привязку шкал времени станций создания преднамеренных радиопомех и шкалы времени НАСП к шкале единого времени, что само по себе является сложной технической задачей, требующей для ее решения отдельных каналов связи для передачи сигналов синхронизации.

Целью изобретения является реализация функции альтернативного координатно-временного обеспечения санкционированных потребителей по сигналам не синхронизированных отечественных средств радиоэлектронного подавления ГНСС.

Сущность изобретения заключается в том, что в пространственно распределенной системе радиоподавления НАП ГНСС с функцией альтернативного координатно-временного обеспечения для санкционированных потребителей станции создания преднамеренных радиопомех не синхронизированы между собой и не синхронизированы с НАСП, а для решения задачи локальной радионавигации осуществляется настройка НАСП:

- в режиме «Подготовка» в НАСП вводится информация о структуре альтернативных навигационных сигналов станций создания преднамеренных радиопомех, их координаты, координаты точки начальной синхронизации, а также заданное значение максимальной ошибки при определении местоположения НАСП;

- в режиме «Синхронизация» в точке начальной синхронизации НАСП осуществляет раздельный прием альтернативных навигационных сигналов всех станций создания преднамеренных радиопомех, измерение значений задержек моментов приема альтернативных навигационных сигналов станций создания преднамеренных радиопомех относительно шкалы времени НАСП, расчет временных поправок, учитывающих рассинхронизм в работе станций создания преднамеренных радиопомех и НАСП с использованием информации о местоположении станций создания преднамеренных радиопомех и точки начальной синхронизации НАСП, расчет собственных координат НАСП в точке начальной синхронизации с использованием измеренных значений задержек принятых альтернативных навигационных сигналов и вычисленных временных поправок, оценку качества начальной синхронизации; критерием успешной синхронизации является совпадение вычисленных собственных координат НАСП в точке начальной синхронизации с известными координатами точки начальной синхронизации в пределах заданного значения максимальной ошибки при определении местоположения НАСП;

- в режиме «Навигация» в произвольной точке в пределах зоны действия пространственно распределенной системы радиоподавления ГНСС НАСП осуществляет раздельный прием альтернативных навигационных сигналов всех станций создания преднамеренных радиопомех, измерение значений задержек моментов приема альтернативных навигационных сигналов станций создания преднамеренных радиопомех относительно шкалы времени НАСП и расчет текущих собственных координат НАСП с использованием текущих измеренных значений задержек принятых альтернативных навигационных сигналов и вычисленных в режиме «Синхронизация» временных поправок.

Сущность изобретения поясняется рисунками. На фиг. 1 представлена пространственно распределенная система радиоподавления НАП ГНСС с функцией альтернативного координатно-временного обеспечения в режиме «Синхронизация» НАСП. На фиг. 2 приведены временные диаграммы, поясняющие принцип определения временных поправок в НАСП в режиме «Синхронизация». На фиг. 3 представлена пространственно распределенная система радиоподавления НАП ГНСС с функцией альтернативного координатно-временного обеспечения в режиме «Навигация» НАСП. На Фиг. 4 показаны результаты компьютерного моделирования, иллюстрирующие эффективность предложенного способа.

Предложенный способ локальной радионавигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем реализуется в пространственно распределенной системе радиоподавления НАП ГНСС с функцией альтернативного координатно-временного обеспечения, состоящей из N станций создания преднамеренных радиопомех 1n с координатами , где n=1…N, и НАСП 2, установленного на борту санкционированного потребителя, например, на борту БПЛА (Фиг. 1), и заключается в следующем.

1. Каждая станция создания преднамеренных радиопомех 1n несинхронно с другими станциями создания преднамеренных радиопомех излучает альтернативный навигационный сигнал, структура которого определяется псевдослучайной последовательностью ПСПn, следующей с периодом повторения T, где n=1, …, N, что обеспечивает раздельный прием альтернативных навигационных сигналов всех станций создания преднамеренных радиопомех 1n в НАСП 2;

2. В режиме «Подготовка» осуществляется подготовка НАСП 2 санкционированного потребителя к начальной синхронизации, для чего:

- санкционированный потребитель с НАСП 2 помещается в точку начальной синхронизации с точно известными координатами (Фиг. 1);

- в НАСП 2 с помощью носителя информации вводится информация о структуре альтернативных навигационных сигналов станций создания преднамеренных радиопомех 1n (ПСПn), координаты станций создания преднамеренных радиопомех 1n , где n=1, …, N, координаты точки начальной синхронизации , заданное значение максимальной ошибки при определении местоположения НАСП ();

3. В режиме «Синхронизация» осуществляется начальная синхронизация НАСП 2 путем расчета временных поправок, учитывающих рассинхронизм в работе станций создания преднамеренных радиопомех 1n и НАСП 2, для чего:

- в НАСП 2 на основании введенной информации рассчитываются значения удаления станций создания преднамеренных радиопомех 1n от точки начальной синхронизации , где n=1…N:

;

- в НАСП 2 по шкале времени приемника относительно момента времени формирования импульса синхронизации НАСП 2, период повторения T которого равен периоду повторения ПСП станций создания преднамеренных радиопомех 1n, измеряются моменты времени приема в НАСП 2 альтернативных навигационных сигналов отечественных средств радиоэлектронного подавления ГНСС 1n , где n=1…N (Фиг. 1);

- в НАСП 2 рассчитываются временные поправки, учитывающие рассинхронизм в работе отечественных средств радиоэлектронного подавления ГНСС 1n и НАСП 2 (Фиг. 2):

,

где n=1…N, с – скорость света.

4. В НАСП 2 осуществляется оценка качества начальной синхронизации в точке начальной синхронизации, для чего:

- для канонического дальномерного метода определения координат составляется система из N уравнений

,

,

……………………………………………………..

,

где - оценки координат точки начальной синхронизации;

- для канонического разностно-дальномерного метода определения координат составляется система из N-1 уравнений

,

……………………………………………………..

……………………………………………………..

,

- системы уравнений решаются относительно одним из численных методов, например [Кирюшкин В.В., Маркин В.Г., Шуваев А.В. Оценка трехмерных координат воздушного объекта по дальномерным измерениям радиолокационных станций, расположенных на равнинной местности // Радиотехника. 2020. Т.84. №6(12).С.67-73. DOI: 10.18127/j00338486-2020006(12)-11];

- вычисленные оценки собственных координат приемника в точке начальной синхронизации сравниваются с известными координатами точки начальной синхронизации с определением радиального отклонения полученной оценки положения точки начальной синхронизации от ее истинного положения:

;

- синхронизация считается успешной, если наименьшее из значений , полученных для дальномерного и разностно-дальномерного метода определения координат, не превышает заданное значение :

;

- в противном случае операции по п. 3 и п. 4 повторяются до выполнения условия успешной синхронизации;

- выбор рабочего метода определения координат, который будет использоваться в режиме «Навигация» осуществляется автоматически по наименьшему из значений , полученных для дальномерного и разностно-дальномерного метода определения координат;

5. В режиме «Навигация» НАСП 2 с использованием текущих значений задержек принятых альтернативных навигационных сигналов станций создания преднамеренных радиопомех 1n , где n=1…N, измеренных относительно момента i-го импульса синхронизации НАСП 2, и значений временных поправок , где n=1, …, N, вычисленных в режиме «Синхронизация», рассчитывает оценки собственных координат НАСП 2 выбранным рабочим методом определения координат (Фиг. 3), для чего:

- вычисляются значения удалений текущего местоположения НАСП 2 от станций создания преднамеренных радиопомех 1n , где n=1…N:

;

- для канонического дальномерного метода определения координат составляется система из N уравнений

,

,

……………………………………………………..

,

где - оценки текущих координат НАСП 2;

- для канонического разностно-дальномерного метода определения координат составляется система из N-1 уравнений

,

……………………………………………………..

,

……………………………………………………..

;

- система уравнений для выбранного метода определения координат решается относительно одним из численных методов, например [Кирюшкин В.В., Маркин В.Г., Шуваев А.В. Оценка трехмерных координат воздушного объекта по дальномерным измерениям радиолокационных станций, расположенных на равнинной местности // Радиотехника. 2020. Т.84. №6(12).С.67-73. DOI: 10.18127/j00338486-2020006(12)-11];

- полученные значения являются оценками текущих координат НАСП 2 в момент времени .

Для оценки эффективности предложенного способа было проведено компьютерное моделирование в локальной системе координат NEU (Север, Восток, Зенит), исходными для которого были следующие данные:

- количество станций создания преднамеренных радиопомех - 3;

- координаты станций создания преднамеренных радиопомех:

x 1=0; y1=0; z1=0;

x 2=13000 м; y2=-15000 м; z2=0;

x 1=0; y1=15000 м; z3=0;

- координаты точки начальной синхронизации НАСП 2:

x 0=15000 м; y0=0; z0=0;

- координаты точки текущего местоположения НАСП 2:

x i=32000 м; yi=32000 м; zi=1000 м;

- сигналы станций создания радиоэлектронного подавления ГНСС – сигналы с двоичной фазовой манипуляцией (BPSK-сигналы);

- длительность ПСП - 2047 бит;

- символьная частота ПСП - 10,230 МГц;

- период ПСП c;

- рассинхронизм шкал времени станций создания радиоэлектронного подавления ГНСС относительно шкалы времени НАСП – случайные величины, равномерно распределенные на интервале, равном Т;

- значение максимальной ошибки при определении местоположения НАСП м.

Результаты определения оценок координат текущего местоположения НАСП 2 с использованием предложенного способа показаны на Фиг. 4, где квадратами показаны места размещения станций создания радиоэлектронного подавления ГНСС, кружком обозначено истинное текущее местоположение НАСП, а звезда указывает на оценку текущего местоположения НАСП.

При этом в ходе начальной синхронизации в режиме «Синхронизация» наилучшие оценки текущих координат местоположения НАСП в точке начальной синхронизации получены для дальномерного метода:

.

Радиальное отклонение полученной оценки положения точки начальной синхронизации от ее истинного положения составило:

м.

Выполняется условие .

В режиме «Навигация» с использованием дальномерного метода получены следующие оценки текущих координат местоположения НАСП:

.

Погрешности определения текущих координат местоположения НАСП подтверждают эффективность предложенного способа локальной радионавигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем.

Способ локальной радионавигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем, использующий пространственно-распределенную систему радиоподавления навигационной аппаратуры потребителей с функцией альтернативного координатно-временного обеспечения для санкционированных потребителей в пределах зоны действия пространственно-распределенной системы радиоподавления, состоящую из станций создания преднамеренных радиопомех, имеющих устройство создания радиопомех с функцией формирования координатно-временного сигнала, и санкционированных потребителей, имеющих навигационную аппаратуру потребителей, обеспечивающую прием альтернативного координатно-временного сигнала от станций создания преднамеренных радиопомех, отличающийся тем, что в пространственно-распределенной системе радиоподавления НАП ГНСС с функцией альтернативного координатно-временного обеспечения для санкционированных потребителей станции создания преднамеренных радиопомех не синхронизированы между собой и не синхронизированы с навигационной аппаратурой санкционированных потребителей (НАСП), а для решения задачи локальной радионавигации осуществляется настройка НАСП:

- в режиме «Подготовка» в НАСП вводится информация о структуре альтернативных навигационных сигналов станций создания преднамеренных радиопомех, их координаты, координаты точки начальной синхронизации, а также заданное значение максимальной ошибки при определении местоположения НАСП;

- в режиме «Синхронизация» в точке начальной синхронизации НАСП осуществляет раздельный прием альтернативных навигационных сигналов всех станций создания преднамеренных радиопомех, измерение значений задержек моментов приема альтернативных навигационных сигналов станций создания преднамеренных радиопомех относительно шкалы времени НАСП, расчет временных поправок, учитывающих рассинхронизм в работе станций создания преднамеренных радиопомех и НАСП с использованием информации о местоположении станций создания преднамеренных радиопомех и точки начальной синхронизации НАСП, расчет собственных координат НАСП в точке начальной синхронизации с использованием измеренных значений задержек принятых альтернативных навигационных сигналов и вычисленных временных поправок, оценку качества начальной синхронизации; критерием успешной синхронизации является совпадение вычисленных собственных координат НАСП в точке начальной синхронизации с известными координатами точки начальной синхронизации в пределах заданного значения максимальной ошибки при определении местоположения НАСП;

- в режиме «Навигация» в произвольной точке в пределах зоны действия пространственно-распределенной системы радиоподавления ГНСС НАСП осуществляет раздельный прием альтернативных навигационных сигналов всех станций создания преднамеренных радиопомех, измерение значений задержек моментов приема альтернативных навигационных сигналов станций создания преднамеренных радиопомех относительно шкалы времени НАСП и расчет текущих собственных координат НАСП с использованием текущих измеренных значений задержек принятых альтернативных навигационных сигналов и вычисленных в режиме «Синхронизация» временных поправок.



 

Похожие патенты:

Изобретение относится к системам регулирования движения транспорта, а именно к глобальным системам управления движением. На станциях управления принимают навигационную информацию извне и передают ее на транспортные средства (ТС), а также рассчитывают координаты обнаруженных объектов и передают их на станции поиска, где определяют координаты, скорости и размеры обнаруженных объектов и передают их на станции управления, где рассчитывают координаты ТС и передают их на станции поиска, где определяют координаты и скорости ТС и передают их на станции управления.

Изобретение относится к системам регулирования движения транспорта, а именно к глобальным системам управления движением. На станции управления принимают навигационную информацию извне и передают ее на транспортные средства (ТС), а также рассчитывают координаты обнаруженных объектов и передают их на станции поиска, где определяют координаты, скорости и размеры обнаруженных объектов и передают их на станцию управления, где рассчитывают координаты ТС и передают их на станции поиска, где определяют координаты и скорости ТС и передают их на станцию управления.

Система управления посадкой многоразовой ракеты с искусственным интеллектом содержит ракету и расположенную на поверхности земли посадочную площадку с установленным на ней навигационным маркером. Ракета содержит корректирующую многодвигательную установку, определенным образом установленную видеокамеру, бортовой вычислитель навигационных параметров с программным обеспечением в виде нейронной сети классификатора объектов, соединенные определенным образом.

Изобретение относится к навигационным устройствам и может быть использовано для определения пилотажно-навигационных параметров движения, географических координат и параметров углового положения летательного аппарата в пространстве. Сущность: бесплатформенная инерциальная навигационная система содержит блок (1) гироскопов, группу акселерометров (2-6) и блок (7) электроники с источником напряжения, размещенный на корпусе (8).

Способ управления движением летательного аппарата, включающий предполетную подготовку с использованием математической модели летательного аппарата, в ходе которой осуществляют запись в память бортовой системы управления исходных данных о динамических параметрах летательного аппарата и опорных точках траектории полета в форме матриц: - блочной матрицы-строки базисных функций (BASIS), маршрутной матрицы ROUTE и матрицы-столбца параметров опорных точек траектории COORD, формируют программную траекторию движения летательного аппарата по опорным точкам, с дальнейшим восстановлением в процессе полета траектории движения летательного аппарата плавным переходом между опорными точками.

Использование: настоящая технология относится к реализованным посредством компьютера способам и системам для калибровки нескольких лидарных датчиков, установленных на беспилотный автомобиль (SDC), с использованием итеративного алгоритма ближайших точек (Iterative Closest Point Algorithm, ICP). Сущность: способ содержит этапы, на которых: выбирают, посредством электронного устройства, (i) по меньшей мере некоторые из множества первых точек данных и (ii) по меньшей мере некоторые из множества вторых точек данных; согласуют, посредством электронного устройства, первые точки данных со вторыми точками данных, за счет этого определяя множество пар; определяют, посредством электронного устройства, конкретное для пары значение ошибки для данной одной из множества пар; определяют, посредством электронного устройства, весовой коэффициент для данной одной из множества пар на основе вектора нормали, ассоциированного с данной второй точкой данных в данной одной из множества пар; и определяют, посредством электронного устройства, глобальное значение ошибки для второго набора данных.

Изобретение относится к области автономной навигации беспилотных летательных аппаратов по оптическим изображениям земной поверхности. Способ автономной навигации беспилотных летательных аппаратов заключается в том, что эталонные и рабочие изображения получают с помощью оптико-электронных систем в инфракрасном диапазоне.

Настоящее изобретение относится к медицинской технике, а именно к разработке позиционирования хирургических инструментов на основе инерциальных микроэлектромеханических (МЭМС) датчиков, а именно к средствам позиционирования, ориентирования и отслеживания хирургических инструментов. Техническим результатом является создание системы инерциального позиционирования и отслеживания хирургических инструментов на основе МЭМС датчиков в режиме реального времени.

Изобретение относится к средствам навигационного обеспечения, в частности к средствам определения местоположения и маршрутов движения подвижных и стационарных объектов в закрытых помещениях (в том числе в подвалах, тоннелях, шахтах), на ограниченных открытых (закрытых) территориях, а также в условиях, где использование ГЛОНАСС/GPS-приемников нецелесообразно или невозможно.

Изобретение относится к робототехнике, в частности к системам управления манипуляторами, расположенными на мобильных роботах (MP), и может быть использовано при дистанционном управлении мобильными роботами для выполнения работ в полуавтоматическом режиме в экстремальных условиях. Предложенный способ обеспечивает комфортное, быстрое и точное управление манипулятором, закрепленным на MP, при возникновении сложных работ, оператором в полуавтоматическом режиме на пересеченной, в том числе неровной, местности, когда информацию об объектах работ и рабочем пространстве манипулятора оператор получает от системы технического зрения (СТЗ), которая установлена на другом MP, находящемся в любом произвольном месте, удобном для осмотра рабочего пространства манипулятора с объектами работ.

Изобретение относится к области радионавигации в условиях радиоэлектронной борьбы. Заявленная аппаратура функционирует в условиях радиоподавления глобальных навигационных спутниковых систем (ГНСС), формируемого станциями радиопомех, не синхронизированных между собой и с навигационной аппаратурой санкционированного потребителя (НАСП). Отличительными признаками изобретения являются: блок начальной синхронизации, индикатор синхронизации, съёмный защищённый носитель информации. Технический результат изобретения заключается в реализации способа альтернативного координатно-временного обеспечения санкционированных потребителей по сигналам несинхронизированных отечественных средств радиоэлектронного подавления ГНСС и достигается обеспечением следующих режимов работы НАСП: «Подготовка» (ключи К1.3 – К1.2, К2.3 – К2.1, К3.3 – К3.1); «Синхронизация» (ключи К1.3 – К1.1, К2.3 – К2.2, К3.3. – К3.2); «Навигация» (ключи К1.3 – К1.1, К2.3 – К2.1, К3.3 – К3.1). 1 ил.
Наверх