Способ получения анодного материала на основе алюмината церия

Изобретение относится к получению материала на основе алюмината церия, который может быть использован в качестве анодного материала для твердооксидных топливных элементов (ТОТЭ) электрохимических устройств, применяемых в электроэнергетике. Способ включает получение твердого раствора на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин. Технический результат заключается в повышении электропроводности анодного материала на основе алюмината церия, снижении температуры его синтеза, упрощении аппаратурного оформления процесса и снижении его стоимости. 3 ил., 5 пр.

 

Изобретение относится к получению материала на основе алюмината церия, который может быть использован в качестве анодного материала для твердооксидных топливных элементов (ТОТЭ) электрохимических устройств, применяемых в электроэнергетике.

К анодным материалам для ТОТЭ предъявляются требования по высокой электронной и ионной проводимости, химической устойчивости в восстановительной среде, хорошему спеканию с электролитом при отсутствии химического взаимодействия, а также коэффициенту термического расширения близкому к электролиту, высокой скорости электродной реакции, высокой термомеханической стабильности и высокой пористости.

Несмотря на большое разнообразие существующих электролитов для ТОТЭ, требуется индивидуальный подбор химически совместимых с ними электродных материалов, поэтому разработка новых способов получения анодных материалов остается актуальной.

Известен материал – алюминат церия состава CeAlO3, синтез которого осуществляют двумя основными способами – твердофазным и сжиганием раствора. Основная проблема в синтезе CeAlO3, где церий присутствует в степени окисления +3, заключается в стабилизации этой степени окисления, поскольку для церия на воздухе устойчива степень окисления +4.

В способе сжиганием раствора в качестве исходных веществ используются мочевина и глицин в разных соотношениях, а также нитраты алюминия и церия [Aruna S.T, Kini N.S, Satish S., Rajam K.S., Synthesis of nanocrystalline CeAlO3 by solution-combustion route // Materials Chemistry and Physics – 2010. - № 119. – P. 485–489]. Вначале готовится раствор с определенными пропорциями топлива (органические реагенты) и нитратов в минимальном количестве воды, который затем вносится в предварительно разогретую до 500°С печь. Реакцию проводят в цилиндрическом алюминиевом тигле, где раствор сгорает через несколько минут, образуя губчатую массу. Подбирая оптимальное соотношение глицина и мочевины, можно получить однофазный CeAlO3. Однако следует отметить, что получение керамического образца из порошка, полученного сжиганием раствора, также требует температуры выше 1000°С и восстановительной атмосферы, поскольку CeAlO3 окисляется на воздухе выше 600°С. Таким образом, для получения анодного материала состава CeAlO3 требуется аппаратное оформление такое же, как при твердофазном методе синтеза.

В твердофазном способе получения керамики CeAlO3 [X. Wang, H. Yamada, K. Nishikubo and C.-N. Xu. Synthesis and Electric Property of CeAlO3 Ceramics // Japanese Journal of Applied Physics, Vol. 44, No. 2, 2005, pp. 961–963] в качестве исходных веществ использовались альфа-Al2O3 оксид алюминия (99.999%, Kojundo Chemical Lab. Co.), нитрат церия Ce(NO3)3⋅5.3H2O (99.9%, Kojundo Chemical Lab. Co.) и борная кислота H3BO3 (99.99%, Aldrich Chemical) в качестве флюса. Эти реагенты смешивались в агатовой ступке в этаноле, высушивались и прокаливались при 900°С в течение 4 ч в восстановительной атмосфере (Ar + 5 % H2). После прокаливания смесь была снова перетерта, а затем спрессована в таблетки диаметром 10 мм. Таблетки спекались при 1350–1600°C в течение 4 ч в восстановительной атмосфере (Ar + 5% H2). Керамика на основе CeAlO3 с пористостью 40 % получена при 1600°С без добавления флюса H3BO3, а керамика с пористостью 6 % была получена при 1450°С с добавлением флюса 5 % мол. H3BO3.

Вышеописанный твердофазный способ получения керамики CeAlO3 характеризуется высокой температурой синтеза (1600°С без использования флюса − борной кислоты Н3ВО3). При этом для снижения температуры синтеза до 1400°С требуется использование борной кислоты Н3ВО3, что приводит к снижению на 1.5 порядка электропроводности керамики (с 10-7 до 5⋅10-9 Ом-1⋅см-1 при 25°С), недостаточной для ее использования в качестве анода ТОТЭ.

Задачей изобретения является разработка способа получения анодного материала для ТОТЭ – керамики на основе алюмината церия, в которой церий присутствует в степени окисления +3, обладающей электропроводностью, достаточной для использования в качестве анода ТОТЭ, и снижение температуры синтеза.

Для этого предложен способ получения анодного материала на основе алюмината церия, характеризующийся тем, что получают твердый раствор на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин.

Анодный материал в виде твердого раствора Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, имеет повышенную электропроводность, например, при 400°С ее величина по сравнению с CeAlO3 повышается с 10-3 до 10-2 Ом-1⋅см-1. Частичное замещение церия на кальций при создании твердого раствора приводит к увеличению электропроводности как результат появления кислородной нестехиометрии.

Понижение температуры синтеза получаемого материала, вероятно, обусловлено использованием карбоната или оксида церия.

Использование в способе оксалата аммония обусловлено тем, что оксалат аммония при нагревании разлагается с образованием газообразных продуктов NH3, CO2 и СО, которые создают восстановительную атмосферу. При соотношении оксалата аммония 1:1 на моль алюмината обеспечивается необходимая концентрация восстановителя, при которой сохраняется степень окисления церия +3, и окисление до степени окисления +4 не происходит.

Таким образом, предложенный способ позволяет на порядок повысить электропроводность анодного материала, понизить температуру синтеза с 1600°С до 1400°С без использования борной кислоты Н3ВО3 в качестве флюса. Понижение температуры с 1600°С до 1400°С, и оксалата аммония – в качестве восстановителя, упрощает аппаратурное оформление процесса, а также позволяет уменьшить его стоимость.

Новый технический результат, достигаемый заявленным способом, заключается в повышении электропроводности анодного материала на основе алюмината церия, снижении температуры его синтеза, упрощении аппаратурного оформления процесса и снижении его стоимости.

Изобретение иллюстрируется рисунками, где на фиг.1 приведена рентгенограмма с обработкой методом полнопрофильного анализа; на фиг.2 – температурная зависимость электропроводности керамики ; на фиг.3 – результаты энергодисперсионного микроанализа керамики .

Для синтеза материала состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, использовали порошки Ce2(CO3)3 или Сe2O3, или СeO2 «чда», Al2O3 «чда» и CaCO3 «чда».

Пример 1. Для синтеза 10 г Сe0.9Ca0.1AlO2.95 использовали навески: 10.1383 г Ce2(CO3)3, 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5,97 г на 10 г Сe0.9Ca0.1AlO2.95. Навески исходных веществ были перетерты в агатовой ступке в среде этилового спирта, а затем спрессованы в несколько таблеток диаметра 2 см гидравлическим прессом при давлении на манометре ~40 атмосфер. Корундовую лодочку с образцами в виде прессованных таблеток помещали в трубчатую печь из непористой муллит-кремнеземистой керамической трубки с пробками из вакуумной резины и карбид-кремниевыми нагревательными стержнями. Ступенчатый отжиг вели вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин. На выходе этот поток газа пропускали через жидкостный затвор с низколетучей жидкостью – дибутилфталатом во избежание диффузии воздуха противотоком, а затем газ уходил в вытяжную вентиляцию.

Пример 2. Для синтеза 10 г Сe0,9Ca0,1AlO2,95 использовали навески: 7.2301 г Сe2O3 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5.97 г на 10 г Сe0.9Ca0.1AlO2.95. Далее синтез вели аналогично примеру 1.

Пример 3. Для синтеза 10 г Сe0,9Ca0,1AlO2,95 использовали навески: 7.2311 г СeO2 0.4899 г CaCO3 и 2.4955 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 5.97 г на 10 г Сe0.9Ca0.1AlO2.95. Далее синтез вели аналогично примеру 1.

Пример 4. Для синтеза 10 г Сe0.98Ca0.02AlO2.99 использовали навески: 7.9264 г СeO2 (или 7.9253 г Сe2O3 , или 11.1133 г Ce2(CO3)3), 0.0986 г CaCO3 и 2.5121 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6 г на 10 г Сe0.98Ca0.02AlO2.99. Далее синтез вели аналогично примеру 1.

Пример 5. Для синтеза 10 г Сe0.95Ca0.05AlO2.975 использовали навески: 7.4334 г СeO2 (или 7.4323 г Сe2O3 , или 10.4220 г Ce2(CO3)3), 0.2386 г CaCO3 и 2.4302 г Аl2О3. Также из расчета в мольном соотношении 1:1 Cе / (NH4)2С2О4⋅Н2О добавляли примерную навеску оксалата аммония гидрата 6 г на 10 г Сe0.95Ca0.05AlO2.975. Далее синтез вели аналогично примеру 1.

Таким образом, заявляемый способ получения анодного материала на основе алюмината церия, позволяет повысить электропроводность анодного материала, понизить температуру его синтеза до 1400°С и не использовать в качестве флюса борную кислоту Н3ВО3. Указанные преимущества предлагаемого способа имеют существенное значение для его использования в промышленных условиях.

Способ получения анодного материала на основе алюмината церия, характеризующийся тем, что получают твердый раствор на основе алюмината церия состава Сe1-хCaхAlO3-0,5х, где 0<х≤0.1, который синтезируют из смеси порошков оксида или карбоната церия, оксида алюминия, а также карбоната кальция в необходимом стехиометрическом количестве по отношению к массе получаемого алюмината, в которую добавляют восстановитель – оксалат аммония в соотношении 1:1 на моль алюмината, синтез осуществляют с использованием ступенчатого отжига, который ведут вначале при температуре 1000°С в течение 12 часов, а затем при 1400°С в течение 96 часов в потоке азота со скоростью 5 л/мин.



 

Похожие патенты:

Изобретение относится к получению сложных оксидов на основе никелита празеодима, которые могут быть использованы в качестве воздушных электродов для среднетемпературных электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры и сенсоры. Способ включает использование исходных солей прекурсоров Pr(NO3)3*6H2O, Ni(NO3)2*6H2O и Co(NO3)2*6H2O, смесь которых нагревают до 70°С с получением расплава, доводят до гомогенного твердого раствора, после чего отжигают при 1150°С в течение 5 часов.

Изобретение относится к области электрохимической энергетики и может быть использовано в производстве высокотемпературных электрохимических устройств на основе твердых электролитов, таких, например, как топливные элементы, электролизеры, электрохимические насосы, сенсоры и т.п., работающие при температурах 600-800 °С.

Изобретение относится к способу изготовления твердооксидных топливных элементов путем направленного жидкофазного синтеза на базе метода совместной кристаллизации азотнокислых солей для получения порошков-прекурсоров и керамических оксидных нанокомпозитов заданного химического состава в системе La2O3-Mn2O3-NiO.

Изобретение относится к области электрохимии, а именно к каталитически активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств, а более конкретно в твердооксидных топливных элементах (ТОТЭ) в качестве несущей анодной подложки.

Изобретение относится к способу изготовления мембранно-электродной сборки для топливного элемента. Техническим результатом является предотвращение дефектного переноса каталитического слоя на электролитную мембрану с листа-подложки.

Настоящее изобретение относится к электродному катализатору для топливного элемента, содержащему углеродный носитель (11) с порами (13) и частицы катализатора, содержащие платину или платиновый сплав и нанесенные на углеродный носитель (11). Поры (13) углеродного носителя (11) имеют наиболее вероятный размер в диапазоне от 2,1 нм до 5,1 нм.

Изобретение относится к твердотельным электрохимическим ячейкам, более конкретно к трубчатым твердооксидным электрохимическим ячейкам с несущим электродом для применения в электрохимическом синтезе химических веществ и к способам изготовления таких трубчатых твердооксидных электрохимических ячеек с несущим электродом.

Изобретение относится к каталитическому слою для топливных элементов и способу его получения. Согласно изобретению каталитический слой для топливного элемента содержит углеродный носитель с порами, металлический катализатор, нанесенный на углеродный носитель, и иономер, покрывающий углеродный носитель, в котором длина кристаллов углеродного носителя составляет не менее 6 нм, и покрытие металлического катализатора иономером составляет 55-65%; и способ получения каталитического слоя для топливного элемента содержит термообработку углеродного носителя с порами в атмосфере инертного газа так, чтобы длина кристалла углеродного носителя становилась не менее 6 нм, термообработку термообработанного углеродного носителя в атмосфере кислорода, чтобы активировать углеродный носитель, позволяя активированному углеродному носителю нанести металлический катализатор, смешивание углеродного носителя с нанесенным металлическим катализатором и иономером, чтобы покрыть углеродный носитель иономером, и формирование каталитического слоя для топливного элемента с использованием углеродного носителя, покрытого иономером.

Изобретение относится к способу формирования каталитического слоя твердополимерного топливного элемента. Согласно изобретению способ включает обработку углеродных нановолокон в растворе сильной неорганической кислоты, отфильтровывание обработанных углеродных нановолокон, их промывку и сушку, получение суспензии нафиона путем добавления к объему раствора нафиона с концентрацией С=1-2 мас.

Группа изобретений относится к способу формирования твердооксидных топливных элементов с металлической опорой. Способ формирования твердооксидного топливного элемента с металлической опорой включает нанесение на металлическую подложку из фольги слоя зеленого анода, содержащего оксид никеля и оксид церия, легированный редкоземельным элементом; предварительный обжиг слоя анода в условиях невосстановительной среды для формирования композитного материала; обжиг композитного материала в восстановительной среде для формирования спеченного металлокерамического материала; обеспечение электролита и обеспечение катода.

Изобретение относится к области электротехники, а именно к высокотемпературным твердооксидным топливным элементам (ТОТЭ) трубчатой геометрии с несущим анодным электродом и способу их изготовления. Повышение надежности микротрубчатых батарей ТОТЭ является техническим результатом изобретения, который достигается за счет того, что единичные трубчатые ТОТЭ размещают в сквозных отверстиях опорной пластины, наносят припой в зоны размещения трубчатых ТОТЭ в отверстиях опорной пластины, после чего производят пайку, при этом припой изготовлен из электропроводящего материала, имеющего температуру плавления выше рабочей температуры ТОТЭ и коэффициент термического расширения (КТР), близкий к КТР материалов опорной пластины и электродов ТОТЭ. Поверхность электрода ТОТЭ (анодного электрода или катодного электрода, а также поверхность электролита вблизи анодного электрода) в области пайки каждого единичного ТОТЭ, размещаемого в отверстии опорной пластины, предварительно покрывают слоем электропроводящего материала, стойкого к рабочей температуре ТОТЭ. Слоем электропроводящего материала является слой, например, из никеля, платины или гидрида титана. Кроме того, обеспечивается повышение технологичности способа и сокращение длительности процесса сборки батареи ТОТЭ за счет объединения электрической коммутации и герметизации в одну операцию с применением высокотемпературных металлических припоев и осуществления операции пайки. 2 н. и 4 з.п. ф-лы, 4 ил., 2 пр.
Наверх