Электробаромембранный аппарат комбинированного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат комбинированного типа состоит из двух крышек, имеющих штуцеры ввода разделяемого раствора, вывода ретентата, отвода пермеата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, корпуса плоскокамерного модуля, опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, трубчатого мембранного модуля, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты. Технический результат - осуществление дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на второй ступени разделения, снижение гидравлического сопротивления в единице объема аппарата, повышение качества и эффективности разделения растворов. 8 ил.

 

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, машиностроительной, пищевой промышленности, аграрном секторе и т. п.

Аналогом данной конструкции является плоскокамерный мембранный аппарат, приведенный в работе Дытнерского Ю.И. «Процессы и аппараты химической технологии. Часть 2.», М.: Химия, 1995, стр. 347-348, представляющий собой набор эллиптических мембранных элементов, находящихся между круглыми фланцами, и трубчатый мембранный модуль для фильтрации жидкости, конструкция которого приведена в патенте RU 2156645 С1, 27.09.2000. Недостатками аналога являются: низкое качество и эффективность разделения и очистки растворов, невозможность дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на конечной ступени разделения. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является мембранный аппарат комбинированного типа, конструкция которого приведена в патенте RU 2496560 C1, 27.10.2013. Бюл. № 30. Прототип состоит из двух крышек, имеющих штуцеры для ввода разделяемого раствора, отвода пермеата, ретентата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, выступы для фиксации трубчатых модулей, корпуса плоскокамерного модуля, имеющего впадину для установки опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, двух трубчатых мембранных модулей, прокладок, герметизирующих заливок, байонетного кольца.

Недостатками прототипа являются: невозможность дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на конечной ступени разделения, высокое гидравлическое сопротивление в единице объема аппарата, низкое качество и эффективность разделения растворов.

Технический результат выражается осуществлением дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на второй ступени разделения, снижением гидравлического сопротивления в единице объема аппарата, повышением качества и эффективности разделения растворов, за счет того, что аппарат состоит из двух крышек, имеющих штуцеры ввода разделяемого раствора, вывода ретентата, отвода пермеата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, корпуса плоскокамерного модуля, опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, трубчатого мембранного модуля, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты.

На фиг. 1 изображен главный вид электробаромембранного аппарата комбинированного типа; на фиг. 2 - вид слева; на фиг. 3 - вид сверху; на фиг. 4 - вид снизу; на фиг. 5 - горизонтальный разрез А-А на фиг. 1; на фиг. 6 - сложный разрез Б-Б на фиг. 5; на фиг.7 - сложный разрез В-В на фиг. 5; на фиг. 8 - выносной элемент Г (увеличено), схема фиксации трубчатого модуля и миграции анионов и катионов на фиг. 5.

Электробаромембранный аппарат комбинированного типа состоит из двух крышек 1 и 2, имеющих штуцеры ввода разделяемого раствора 3, вывода ретентата первой и второй ступени 4, 5, отвода прикатодного и прианодного пермеата 6, 7 и подачи воздуха 8 для нагнетания давления в камеру для пермеата первой ступени 9, трубчатого мембранного модуля 10, имеющего изогнутую форму, корпуса плоскокамерного модуля 11, опорных колец 12 и 13, канала 14 для отвода пермеата от плоских мембранных элементов, обратного клапана 15, препятствующего попаданию пермеата обратно в канал; жесткой дренажной сетки 16, пористой подложки 17, мембран 18, поплавкового уровнемера 19, отслеживающего уровень пермеата в камере для пермеата первой ступени, прокладок 20 и 21, герметизирующей заливки 22, байонетного кольца 23 для соединения крышек аппарата, проточного окна 24, соединяющего камеры разделения плоскокамерного модуля, клемм для подвода постоянного электрического тока - катода 25 и анода 26, выполненных в виде цилиндрических шпилек, контактирующих с пластинами электрод-катодом 27 и электрод-анодом 28, прикатодного и прианодного канала 29, 30 трубчатого мембранного модуля 10, прикатодной и прианодной мембраны второй ступени 31, 32, трубчатой пористой подложки 33, прикатодной и прианодной дренажной сетки 34, 35, прикатодной и прианодной камер для пермеата второй ступени 36, 37, диэлектрической перегородки 38, уплотнителя 39 трубчатого мембранного модуля 10, заглушки 40, манжеты 41.

Крышки 1 и 2, штуцеры ввода разделяемого раствора 3, вывода ретентата первой и второй ступени 4, 5, отвода прикатодного и прианодного пермеата 6, 7, подачи воздуха 8, корпус плоскокамерного модуля 11, опорные кольца 12 и 13, байонетное кольцо 23, диэлектрическая перегородка 38, заглушка 40 выполнены из диэлектрического материала капролон (полиамид-6).

Трубки трубчатого мембранного модуля 10 могут быть изготовлены из трубчатого ультрафильтра типа БТУ 05/2.

Прикатодные и прианодные дренажные сетки 34, 35 могут быть выполнены из материала Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, О8Х18Т1.

Пористые подложки 17 и трубчатые пористые подложки 33 могут быть выполнены из листа ватмана.

Мембраны 18 могут быть выполнены из полотна мембран ОПМН-П, ОПМН-К, ОПМ-К, МГА-95, МГА-100, УАМ-50, УАМ-100.

Прокладки 20 и 21, уплотнители 39, манжеты 41 могут быть выполнены из паронита.

Герметизирующие заливки 22 могут быть выполнены из герметизирующих эпоксидных смол.

Аппарат работает следующим образом.

Исходный раствор под трансмембранным давлением, превышающим осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 3, фиг. 1, 2, 4, 6, 7, подается в первую камеру разделения плоскокамерного модуля, образованную нижней крышкой 2, прокладкой 20, опорным кольцом 12 и мембраной 18, фиг. 6, 7. Из первой камеры разделения получаемый пермеат отводится в канал 14 для отвода пермеата от плоских мембранных элементов в корпусе плоскокамерного модуля 11, а оставшийся раствор переходит через проточное окно 24 в следующую камеру разделения, фиг. 5, 6, 7.

Раствор переходит из одной камеры разделения в другую камеру разделения по проточным окнам 24 всего плоскокамерного модуля, попадая в последнюю камеру разделения, образованную верхней крышкой 1, прокладкой 20, опорным кольцом 12 и мембраной 18, фиг. 6, 7. Средние камеры разделения образованы межмембранными каналами, расположенными между мембранами 18 и опорным кольцом 13. Образующийся при этом пермеат по каналу 14 для отвода пермеата от плоских мембранных элементов в корпусе плоскокамерного модуля 11 отводится в камеру для пермеата первой ступени 9, а ретентат выводится из аппарата через штуцер вывода ретентата первой ступени 4 в верхней крышке 1, фиг. 1, 2, 3, 6, 7.

При заполнении камеры для пермеата первой ступени 9 подача разделяемого раствора в плоскокамерный модуль прекращается и включается компрессор, через штуцер подачи воздуха 8 нагнетается давление в камеру для пермеата первой ступени 9, фиг. 1, 2, 3, 6, 7 . Обратный клапан 15, установленный на корпусе плоскокамерного модуля 11, препятствует попаданию пермеата из камеры для пермеата первой ступени 9 обратно в канал 14, фиг. 6, 7. Уровень пермеата в камере для пермеата первой ступени 9 отслеживается посредством поплавкового уровнемера 19, фиг. 1, 2, 3, 5, 7.

Одновременно с включением компрессора на клеммы для подвода постоянного электрического тока - катод 25 и анод 26, выполненных в виде цилиндрических шпилек, контактирующих с пластинами электрод-катодом 27 и электрод-анодом 28, фиг. 1, 2, 3, 5, 6, 7, соединенными с прикатодными и прианодными дренажными сетками 34, 35 трубчатого мембранного модуля 10 соответственно, фиг. 5, 8, подается внешнее напряжение, которое устанавливает заданную постоянную плотность тока в пермеате первой ступени.

Под действием давления, нагнетаемого компрессором через штуцер подачи воздуха 8, пермеат первой ступени подается в трубчатый мембранный модуль 10, фиг. 5, 6, 7.

Под действием электрического тока из камеры разделения трубчатого мембранного модуля 10 анионы и катионы проникают через прикатодные и прианодные мембраны второй ступени 31, 32 соответственно, трубчатые пористые подложки 33, и по прикатодным и прианодным дренажным сеткам 34, 35, в потоках прикатодного и прианодного пермеата по прикатодным и прианодным каналам 29, 30 трубчатого мембранного модуля 10 собираются в прикатодной и прианодной камерах для пермеата второй ступени 36, 37, разделенных диэлектрической перегородкой 38, фиг. 5, 8, и через штуцеры отвода прикатодного и прианодного пермеата 6, 7 выводятся из аппарата, при этом образовавшийся ретентат второй ступени через штуцер вывода ретентата второй ступени 5 также выводится из аппарата, фиг. 2, 4, 6, 7.

При опустошении камеры разделения для пермеата первой ступени компрессор выключается, подача воздуха через штуцер подачи воздуха 8 прекращается, при этом с клемм для подвода постоянного электрического тока - катода 25 и анода 26 напряжение снимается, подача исходного раствора в плоскокамерный модуль через штуцер ввода разделяемого раствора 3 возобновляется и процесс повторяется.

Дифференцированное выделение ионов в потоках прикатодного и прианодного пермеата второй ступени разделения раствора позволяет получать растворы, обогащенные катионами и анионами, в виде оснований, кислот и растворенных газов, соответственно, фиг. 5, 8.

Снижение гидравлического сопротивления в единице объема аппарата осуществляется за счет того, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты и прикатодный, прианодный пермеат второй ступени перекачивается только по одному набору трубок трубчатого мембранного модуля, фиг. 1, 2, 3, 4, 5, 6, 7, 8.

Повышение качества и эффективности разделения растворов достигается тем, что пермеат первой ступени, фиг. 6, 7, поступает в трубчатый мембранный модуль и разделяется на прикатодный, прианодный пермеат второй ступени в виде оснований, кислот и газов, который можно повторно использовать в производственном цикле, а ретентат второй ступени - в виде технической очищенной воды, фиг 5, 8.

Таким образом, разделение раствора происходит в две стадии: на первой стадии раствор проходит через плоскокамерный модуль, а на второй - через трубчатый модуль, что обеспечивает высокую степень очистки раствора.

Электробаромембранный аппарат комбинированного типа, состоящий из двух крышек, имеющих штуцеры ввода разделяемого раствора, вывода ретентата, отвода пермеата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, корпуса плоскокамерного модуля, опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, трубчатого мембранного модуля, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты.



 

Похожие патенты:

Изобретение относится к системам очистки жидкости с применением фильтрующих мембран, предназначенным для очистки или обессоливания жидкости, преимущественно воды, из различных источников, в том числе питьевой воды, технологических растворов, сточных вод, напитков и других жидкостей в бытовых или промышленных условиях, на дачных и садовых участках.

Изобретение имеет отношение к подавляющему адгезию биологического компонента материалу и очистителю крови, содержащему такой материал. Представленный материал содержит подложку, которая имеет функциональный слой с полимером, иммобилизованным на поверхности, который находится в контакте с биологическим компонентом.

Изобретение относится к способу для фильтрации содержащей белок жидкости. Способ фильтрации жидкости, содержащей белок в концентрации от 20 мг/мл до 100 мг/мл, включающий: стадию предварительной фильтрации содержащей белок жидкости с помощью предварительного фильтра, имеющего размер пор 0,08 мкм – 0,25 мкм и содержащего гидрофобную смолу, и стадию удаления вирусов после стадии предварительной фильтрации путем фильтрования содержащей белок жидкости мембраной для удаления вирусов, содержащей синтетический полимер, причем содержащая белок жидкость до выполнения стадии предварительной фильтрации содержит 0,25 г или больше тримера или мультимера белков, имеющего средний диаметр меньше чем 100 нм на 1 м2 мембраны для удаления вирусов.

Изобретение относится к водородной энергетике, в частности к мембранным технологиям получения особо чистого водорода из газовых смесей, содержащих водород. При этом для получения особо чистого водорода предпочтительно используют тонкие плоские мембраны из палладия и его сплавов, скрепленные с конструктивными деталями мембранного элемента с помощью пайки или сварки.

Изобретение относится к выпускному элементу с фильтром для прокапывания фиксированного количества фильтрата при фильтровании суспензий и может быть использовано при генетических исследованиях во многих областях, включая диагностику инфекционных заболеваний. Выпускной элемент 4 снабжен фильтром F, который делает возможным прокапывание фильтрата в капельный контейнер, при котором отсос избыточной части осуществляется без ухудшения рабочих характеристик прокапывания и рабочих характеристик фильтрования в случае, когда фильтрат прокапывается в капельный контейнер при фильтровании суспензии, содержащей мелкодисперсные частицы, такие как адсорбент, и избыточная часть должна отсасываться, когда накапанное количество является избыточным, чтобы при этом дать возможность для инжектирования фиксированного количества фильтрата в капельный контейнер.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности. Электробаромембранный аппарат комбинированного типа включает две крышки, имеющие штуцеры для ввода разделяемого раствора, отвода пермеата первой ступени, отвода ретентата первой ступени и отвода ретентата второй ступени, два трубчатых мембранных модуля, выступы для фиксации трубчатых модулей, корпус плоскомембранного модуля, имеющий впадину для установки опорных колец, обратный клапан, пористую подложку, поплавковый уровнемер, герметизирующие заливки, байонетное кольцо.

Изобретение относится к сшитой термически перестроенной полимерной мембране для разделения газов и способу ее получения. Сшитая термически перестроенная полимерная мембрана, полученная согласно изобретению, содержит атомы фтора, распределенные в ней с обеспечением градиента концентрации от поверхности.

Изобретение относится к системам и способам для разделения несмешиваемых жидкостей. Предложен способ, включающий: обеспечение наличия устройства для разделения фаз, включающего пористую мембрану, имеющую фильтрующую поверхность, где фильтрующая поверхность имеет неплоскую конфигурацию, которая образует приемную полость; помещение смеси жидкостей в приемную полость пористой мембраны, где смесь жидкостей включает полярную жидкость и неполярную жидкость, несмешиваемые друг с другом; при этом фильтрующая поверхность, расположенная вдоль приемной полости, выполнена так, что она препятствует течению полярной жидкости через фильтрующую поверхность и не препятствует течению неполярной жидкости внутрь пористой мембраны; и обеспечение возможности течения неполярной жидкости внутрь пористой мембраны; при этом полярная жидкость образует каплю внутри приемной полости, тогда как неполярная жидкость протекает внутрь пористой мембраны.

Изобретение относится к установкам для разделения и концентрирования жидких сред и может найти применение при изготовлении устройств с использованием полупроницаемых мембран для удаления механических, коллоидных и растворенных включений размером 0,1 мкм и выше, в том числе для химической, биотехнической промышленности, а также в системах водоочистки, фармацевтике.

Изобретение относится к установкам для разделения и концентрирования жидких сред и может найти применение при изготовлении устройств с использованием полупроницаемых мембран для удаления механических, коллоидных и растворенных включений размером 0,1 мкм и выше, в том числе, для химической, биотехнической промышленности, а также в системах водоочистки, фармацевтике.

Изобретение относится к области разделения суспензий промышленного, сельскохозяйственного и бытового назначения и может быть использовано в различных отраслях промышленности. Кавитационный мембранный аппарат содержит каркас с полупроницаемой мембраной, очистительный элемент, установленный внутри каркаса с возможностью совершения возвратно-поступательного движения.
Наверх