Способ определения коэффициента ослабления фидерной линии

Изобретение относится к технике радиоизмерений и предназначается для определения коэффициента ослабления антенно-фидерной линии. Техническим результатом является повышение точности измерения. Изобретение представляет собой способ определения коэффициента ослабления фидерной линии, заключающийся в измерении коэффициента стоячей волны по напряжению фидерной линии, нагруженной на короткозамыкатель, с последующим расчетным определением коэффициента ослабления, в котором после измерения коэффициента стоячей волны по напряжению фидерной линии, нагруженной на короткозамыкатель, дополнительно измеряется коэффициент стоячей волны по напряжению фидерной линии, нагруженной на согласованную нагрузку, затем определяется коэффициент ослабления А фидерной линии. 3 ил.

 

Изобретение относится к технике радиоизмерений и может быть использовано в антенно-фидерной технике.

Известен способ определения коэффициента ослабления в фидерных линиях Дешана [1], включающий в себя измерения комплексного коэффициента отражения исследуемой фидерной линии, нагруженной на подвижный короткозамыкатель при его разных положениях, и определение коэффициента ослабления по результатам измерений. Недостатком способа является его значительная трудоемкость.

Наиболее близким к изобретению по технической сущности является способ определения коэффициента ослабления в фидерных линиях по методу Татаринова [1], принимаемого за прототип, заключающийся в измерении коэффициента стоячей волны по напряжению (КСВН) короткозамкнутой фидерной линии с последующим определением коэффициента ослабления А по формуле

где К - КСВН фидерной линии, нагруженной на короткозамыкатель.

Недостатком прототипа является то, что в способе не учитывается влияние неоднородностей фидерной линии на величину коэффициента ослабления, что приводит к большой систематической погрешности, которая тем больше, чем больше величина неоднородностей, что резко ограничивает область применения способа только хорошо настроенными фидерными линиями.

Технический результат предлагаемого изобретения заключается в том, что увеличивается точность измерения коэффициента ослабления фидерной линии вследствие уменьшения систематической погрешности измерений, которая возникает в результате влияния неоднородностей фидерной линии на величину расчетного коэффициента ослабления. Указанный технический результат достигается тем, что при расчете коэффициента ослабления фидерной линии дополнительно к измеренным значениям КСВН фидерной линии, нагруженной на короткозамыкатель, также используются измеренные значения КСВН фидерной линии, нагруженной на согласованную нагрузку.

Предлагаемый способ поясняется чертежами фиг. 1 - фиг. 3.

Фиг. 1 - структурная схема измерения коэффициента ослабления, где:

1 - панорамный измеритель КСВН Р2-137/1;

2 - коаксиально-волноводный переход;

3 - измеряемый участок волноводного тракта;

4 - короткозамыкатель или согласованная нагрузка.

Фиг. 2 - результаты расчета КСВН фидерной линии, нагруженной на согласованную нагрузку для конкретной реализации волноводного тракта в рабочем диапазоне частот, где:

R - КСВН фидерной линии, нагруженной на согласованную нагрузку;

F<1> - значения отношения длины тракта к длине волны.

Фиг. 3 - результаты расчетов численного моделирования процесса измерения коэффициента ослабления той же конкретной реализации волноводного тракта в рабочем диапазоне частот, где:

А - измеряемый коэффициент ослабления тракта в дБ;

Аех - коэффициент ослабления тракта в дБ, измеренный по способу Татаринова;

Aexn - коэффициент ослабления тракта в дБ, измеренный по предлагаемой методике;

F<1> - значения отношения длины тракта к длине волны.

Предложенный способ реализуется следующим образом. Ко входу измеряемого участка волноводного тракта через коаксиально волновой переход подключается панорамный измеритель КСВН Р2-137/1, к выходу измеряемого участка волноводного тракта подключается короткозамыкатель и измеряется КСВН, затем короткозамыкатель заменяется на согласованную нагрузку и измеряется КСВН.

Коэффициент ослабления А фидерной линии определяется по формуле

где К - КСВН фидерной линии, нагруженной на короткозамыкатель; R - КСВН фидерной линии, нагруженной на согласованную нагрузку на той же частоте.

Из формулы следует, что при R=2 систематическая погрешность по способу Татаринова равна 0,5 дБ.

Приведенные на фиг. 3 расчеты показывают, что предлагаемый способ измерения коэффициента ослабления, по сравнению с прототипом, уменьшает систематическую погрешность измерения в 10 раз при среднем значении КСВН тракта в рабочем диапазоне, равным 2.

Источники информации

1. Стариков В.Д. Методы измерения на СВЧ с применением измерительной линии. М: Советское радио. 1972. С. 83-85, с. 71-73.

Способ определения коэффициента ослабления фидерной линии, заключающийся в измерении коэффициента стоячей волны по напряжению фидерной линии, нагруженной на короткозамыкатель, с последующим расчетным определением коэффициента ослабления, отличающийся тем, что с целью увеличения точности измерения коэффициента ослабления фидерной линии, после измерения коэффициента стоячей волны по напряжению фидерной линии, нагруженной на короткозамыкатель, дополнительно измеряется коэффициент стоячей волны по напряжению фидерной линии, нагруженной на согласованную нагрузку, затем определяется коэффициент ослабления А фидерной линии по формуле

,

где К - коэффициент стоячей волны по напряжению фидерной линии, нагруженной на короткозамыкатель; R - коэффициент стоячей волны по напряжению фидерной линии, нагруженной на согласованную нагрузку на той же частоте.



 

Похожие патенты:

Изобретение относится к области радиоизмерений. Устройство для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ содержит преобразователь СВЧ и двухканальный приемник промежуточной частоты.

Изобретение относится к электроизмерительной технике и может быть использовано в электронных измерителях фазовых сдвигов. Техническим результатом является расширение частотного диапазона коммутатора гармонических сигналов.

Изобретение относится к радиоизмерительной технике и может быть использовано для калибровки измерителей комплексных коэффициентов передачи и отражения устройств - векторных анализаторов цепей (ВАЦ). Техническим результатом является упрощение, расширение функциональных возможностей способа и увеличение точности калибровки.

Изобретение относится к измерительной технике, в частности к способам обнаружения и оценки дефектов диэлектрических и магнитодиэлектрических материалов и покрытий и может быть использовано при контроле качества твердых материалов и покрытий на металле в процессе разработки и эксплуатации радиопоглощающих материалов и покрытий, а также в химической, лакокрасочной и других отраслях промышленности.

Изобретение относится к области контроля параметров частотного фильтра электрического сигнала. В частности, способ предназначен для производственного контроля соответствия монотонной амплитудно-частотной характеристики (АЧХ) полосового фильтра требованиям конструкторской документации.

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты. Сущность заявленного решения заключается в том, что в устройство для измерения комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты, состоящее из векторного анализатора цепей, содержащего генератор испытательных СВЧ-сигналов, первый переключатель и связанную с ним согласованную нагрузку, СВЧ-гетеродин, векторный вольтметр, выходной контакт, первый и второй порты, первый, второй, третий и четвертый направленные ответвители, двухканальный супергетеродинный приемник, содержащий испытуемый и опорный СВЧ-смесители, СВЧ-генератор, второй, третий и четвертый переключатели, первый и второй смесители промежуточной частоты, блок опорных частот, компаратор, компьютер, смеситель фазовой автоподстройки частоты (ФАПЧ), фазовый детектор, дополнительно введены два СВЧ-аттенюатора, два СВЧ-усилителя и трехканальный делитель мощности.

Изобретения относятся к радиоизмерительной технике и могут быть использованы при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Технический результат заключается в увеличении точности определения комплексных коэффициентов передачи СВЧ-смесителей, а также упрощении процесса измерений.

Изобретение относится к измерительной технике сверхвысоких частот, в частности к измерениям параметров СВЧ-двухполюсников. Технический результат - увеличение точности, а также уменьшение габаритов, массы и стоимости аппаратурной реализации.

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Предлагается устройство для измерения комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты, содержащее векторный анализатор цепей, который включает в себя: генератор испытательных СВЧ-сигналов, первый переключатель и связанную с ним согласованную нагрузку, СВЧ-гетеродин, первый, второй, третий и четвертый направленные ответвители, векторный вольтметр с его выходным контактом, первый и второй порты.

Изобретение относится к радиоизмерительной технике и может быть использовано при калибровке измерителей комплексных коэффициентов передачи СВЧ-устройств с преобразованием частоты. Техническим результатом является повышение точности измерений, упрощение процесса измерений, уменьшение числа необходимых для проведения калибровки операций.
Наверх