Способ получения порошка гидроксиапатита повышенной текучести



B07B1/00 - Разделение или сортировка твердых материалов путем просеивания или грохочения; разделение с помощью газовых или воздушных потоков; прочие виды разделения сухими способами сыпучих материалов или штучных изделий, хранимых навалом и пригодных для сортировки как сыпучие материалы (комбинирование устройств для сухого разделения с устройствами для мокрого разделения B03B; сортировка почтовых отправлений, сортировка изделий или материалов вручную или автоматически с помощью механизмов, срабатывающих под действием импульса элементов, воспринимающих или измеряющих параметры сортируемых изделий или материалов B07C)

Владельцы патента RU 2781372:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (RU)

Изобретение относится к производству керамических материалов медицинского назначения, а именно к способу получения порошка кристаллического гидроксиапатита кальция (ГАП) стехиометрического состава высокой текучести, пригодного для плазменного напыления на керамические и металлические имплантаты, применяемые в стоматологии, челюстно-лицевой хирургии и ортопедии, а также для 3D-печати керамических биорезорбируемых имплантатов. Предложен способ получения порошка гидроксиапатита повышенной текучести, включающий размол гидроксиапатита до получения порошка, обжиг в высокотемпературной печи в атмосфере воздуха с последующим отсевом, отличающийся тем, что для получения порошка гидроксиапатита высокой текучести размол механохимически синтезированного гидроксиапатита производится в механической ступке до получения порошка с размером частиц не более 90 мкм, обжиг производят при 1200°С, отсев мелкой фракции на сите с размером ячеек 40 мкм проводится сухим, мокрым или мокро-сухим способами. Технический результат – способ позволяет получить порошок гидроксиапатита повышенной текучести с дисперсностью 90-40 мкм, пригодный для изготовления плазмонапыленного покрытия и в аддитивном производстве. 2 ил., 1 табл., 3 пр.

 

Изобретение относится к производству керамических материалов медицинского назначения, а именно к способу получения порошка кристаллического гидроксиапатита кальция (ГАП) стехиометрического состава высокой текучести, пригодного для плазменного напыления на керамические и металлические имплантаты, применяемые в стоматологии, челюстно-лицевой хирургии и ортопедии, а также для 3d-печати керамических биорезорбируемых имплантатов.

Изобретение позволяет получить порошок гидроксиапатита с преимущественным размером частиц 90-40 мкм высокой текучести, который можно использовать при изготовлении медицинских имплантатов путем плазменного напыления [1.Патент РФ 24443 434 С1 опубл.27.02.2012; 2. Патент РФ 21146535 С1, опубл. 20.03.2000], а также 3d-печати керамических биорезорбируемых имплантатов [3.Ferrage L., Bertrand G., Lenormand P., D. Grossin, Ben-Nissan B. A review of the additive manu-facturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. Aust Ceram Soc. 2017. vol. 53. P.11-20].

Гидроксиапатит кальция - Ca10(PO4)6(OH)2 является структурным аналогом минеральной составляющей костного вещества, имеет сходные физические и механические свойства, обладает уникальной биологической совместимостью и способностью активно стимулировать размножение клеток соединительной ткани и новообразование костной ткани, что определяет использование ГАП в качестве материала для медицинских целей: покрытий имплантатов, изготовления биосовместимой керамики, лекарственных, косметических и стоматологических средств.

Химический и фазовый состав покрытия, получаемого при плазменном напылении порошка ГАП, зависит не только от параметров напыления, но и от фракционного состава напыляемого материала. Авторы работы [4.Cheang P., Khor K.A. Thermal spraying of hydroxyapatite (HA) coatings: Effects of powder feedstock // J Mater Process Technol.1995.vol. 48, iss. 1-4. p. 429-436], путем проведения анализа структуры порошков ГАП различного фракционного состава после нахождения в плазменной струе установили, что частицы диаметром менее 30 мкм расплавлены полностью и имеют аморфную структуру, а частицы диаметром 55 мкм и более имеют наряду с расплавом кристаллическое ядро, соответствующее структуре ГАП. Известно, что аморфные фосфаты кальция имеют более высокую скорость растворения [Dorozhkin S.V. Bioceramics of calcium prthophosphates // Biomaterials. 2010. Vol. 31. P.1465-1485], что приведет быстрой деградации полученного биопокрытия. Следовательно, при получении биопокрытий на основе ГАП методом плазменного напыления необходимо использовать частицы размером более 50 мкм. Авторы работы [6.Tong W., Chen J. Effect of particle size on molten states of starting powder and degradation of the relevant plasma-sprayed hydroxyapatite coatings// Biomaterials.1996.vol. 17. iss. 15. P. 1507-1513] исследовали микроструктуру покрытий, полученных плазменным напылением порошков ГАП с различным распределением частиц по размерам (от 1 до 180 мкм) на титановые подложки и установили, что, не смотря на высокую кристалличность покрытий, образованных из крупных частиц гидроксиапатита размером более 125 мкм, замечена их быстрая деградация при погружении в деионизированную воду и, как результат, высокая пористость покрытий.

В работе [7. P. Navarrete-Segado, C. Frances, D. Grossin, M. Tourbin. Tailoring hydroxyapatite microspheres by spray drying for powder bed fusion feedstock. Preprint. engrXiv, 11 Oct. 2021. Web. DOI: 10.31224/osf.io/jctr2] сообщается, что для 3d-печати путем лазерной обработки порошкового слоя рекомендуется использовать частицы размером более 20 мкм. Верхняя граница размера определяется толщиной создаваемого при печати слоя. Кроме того, для данного способа печати важным параметром является текучесть порошка [8. D. Grossin, A. Montуn, P. Navarrete-Segado, E. Цzmen, G. Urruth, F. Maury, D. Maury, C. Frances, M. Tourbin, P. Lenormand, G. Bertrand. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites // Open Ceramics. 2021. Vol.5. P. 100073]. Чем выше текучесть, тем ровнее насыпной слой, подготавливаемый для лазерной обработки.

Известен способ гидротермального получения порошка гидроксиапатита с регулируемым гранулометрическим составом [9. Патент РФ 2717064 C1, «Способ получения гидроксиапатита с регулируемым гранулометрическим составом», опубл. 17.03.2020]. Данный способ включает в себя приготовление смеси, содержащей нитрат кальция, гидрофосфат аммония и воду, выдерживание смеси в автоклаве при давлении 150-200 атм. и температуре 200-250°С в течение 1-1,5 ч и рН смеси 10-12. Промытый осадок сушат в разреженной атмосфере при давлении 10-5 мм рт.ст. и температуре не более -55°С. Затем суспензию из этилового спирта, воды и сухого осадка обрабатывают ультразвуком и проводят грануляцию с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин с последующим сбором сферических гранул с комплекса циклонных фильтров. Изобретение позволяет получить гранулы гидроксиапатита с размером от 5 до 25 мкм и пригодно для аддитивных технологий, но не позволяет получать гранулы гидроксиапатита размером 40-90 мкм, это технически сложно.

Известен способ получения гранулированных частиц гидроксиапатита осаждением из раствора [10. Патент РФ 2717275 C2 Способ получения гранулированных частиц гидроксиапатита, опубл.19.03.2020], состоящий в приготовлении прекурсоров в виде растворов, содержащих ионы кальция, ионы аммония и фосфат-ионы, осаждении гидроксиапатита из растворов прекурсоров при постоянном значении рН, отделении осадка, сушку и термообработку. В качестве прекурсоров готовят раствор нитрата кальция, раствор аммиака и раствор фосфорной кислоты или аммония фосфорнокислого. Формирование осадка гидроксиапатита осуществляют при постоянном соотношении Са2+/PO43-, находящемся в интервале 1,5-1,8, и постоянном значении рН, находящемся в интервале 7-9. Способ получения обеспечивает получение сферических частиц размером 20-60 мкм. Недостатками данного способа являются необходимость непрерывного контроля рН.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ получения порошка гидроксиапатита для плазменного напыления [11. UA 19491A опубл. 25.12.1997], включающий двухстадийный синтез гидроксиапатита методом химического осаждения из водных растворов нитрата кальция и гидрофосфата аммония, в котором сначала смешивают с нитратом кальция 3-7 об.% от всего объема раствора фосфата аммония, перемешивают и доливают остальной раствор гидрофосфата аммония, затем следуют старение, промывание, отделение и сушка образованного осадка до влагосодержания 1-2 мас.%, с последующим его измельчением, обкаткой и обжигом. В результате получают порошок гидроксиапатита с размером частиц 63-80 мкм; 80-100 мкм и текучестью 74-78 с/50 г. Данный способ получения длителен и многостадиен.

В основу предлагаемого изобретения поставлена задача получения порошка гидроксиапатита повышенной текучести с дисперсностью 90-40 мкм, пригодного для изготовления плазмонапыленного покрытия и в аддитивном производстве.

Поставленная задача решается благодаря тому, что в заявляемом техническом решении, включающем размол синтезированного гидроксиапатита в механической ступке до получения порошка с размером частиц не более 90 мкм, обжига в высокотемпературной печи при 1200°С в атмосфере воздуха, отсев мелкой фракции на сите с размером ячеек 40 мкм проводят сухим, мокрым и мокро-сухим способами. В результате получают порошок гидроксиапатита с преимущественным размером частиц 90-40 мкм, малым содержанием частиц размером менее 15 мкм и, как результат, с высокой текучестью (73-55 с/50 г), который можно использовать при изготовлении медицинских имплантатов путем плазменного напыления, а также 3d-печати керамических биорезорбируемых имплантатов путем лазерной обработки слоя порошка.

В качестве исходного сырья используется готовый гидроксиапатит, синтезированный механохимическим способом [12. Chaikina M.V., Bulina N.V., Vinokurova O.V., Prosanov I.Yu. Dudina D.V. Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the “soft” mechanochemical synthesis of hydroxyapatite. Ceram. Int. 2019. Vol.45. P.16927-16933, способ 5]. Согласно данным рентгенофазового анализа синтезированный продукт представляет собой гидроксиапатит, рентгенограмма которого идентична приведенной в базе данных PDF-2 за номером 72-1243, без примеси исходных компонентов и других фаз (фиг. 1).

Производится размол синтезированного гидроксиапатита в механической ступке до получения порошка с размером частиц не более 90 мкм с последующим обжигом в высокотемпературной печи при 1200°С в атмосфере воздуха в течение 1 часа для достижения высокой степени кристалличности синтезированного ГАП. После естественного остывания продукта в печи проводится отсев мелкой фракции на сите с размером ячеек 40 мкм различными способами: сухим (пример 1), мокрым (пример 2), мокро-сухим (пример 3). В результате получены продукты повышенной текучести, значения которой приведены в таблице 1. Как видно из табл. 1, все порошки имеют текучесть ниже значения 74 с/50 г, которое приведено в патенте [11. UA 19491A опубл. 25.12.1997]. Наилучшее значение текучести получено для мокро-сухого способа отсева.

Из фиг. 2 видно, что при сухом способе отсева мелкой фракции образец содержит отдельно лежащие мелкие частицы, при мокром способе наблюдается наличие большого количества налипших мелких частиц, а при мокро-сухом их присутствие минимально. Данные гранулометрического состава (фиг. 3) так же указывают на то, что мокро-сухой способ наиболее эффективно удаляет фракцию менее 30 мкм.

Известно, что содержание фракции с размером частиц менее 15 мкм в порошке оказывает отрицательное влияние на его текучесть [13. Борисов Ю.С., Борисова А.Л., Туник А.Ю. и др. Структура и свойства порошков для получения биокерамических покрытий способом плазменного напыления// Автоматическая сварка. 2007. №4.С. 12-16]. Таким образом, в предлагаемом изобретении повышенная текучесть достигается не путем процедуры овализации, как в патенте [11. UA 19491A опубл. 25.12.1997], а за счет удаления мелкой фракции. Использование сухого способа отсева мелкой фракции (пример 1) позволяет получать порошок гидроксиапатита повышенной текучести без использования стадии овализации. Мокрый способ отсева мелкой фракции (пример 2) позволяет провести операцию отсева гораздо быстрее, чем это возможно сухим способом (меньше забиваются сита) и с меньшим остаточным содержанием. Добавление этапа сухого отсева после операции мокрого отсева при мокро-сухом способе (пример 3) позволяет освободить порошок от мелких частиц, оставшихся в результате слипания при стадии мокрого рассева. Содержание фракции частиц менее 15 мкм в полученных образцах приведено в табл. 1.

Заявляемое техническое решение позволяет получать порошок гидроксиапатита высокой текучести, которая достигается путем максимально возможного отсева мелкой фракции сухим (пример 1), мокрым (пример 2), мокро-сухим (пример 3) способами без дополнительной стадии овализации.

Текучесть определяли по ISO 4490:2018(E) посредством калиброванной воронки Холла (табл.1). Морфологию частиц (фиг.2) исследовали с помощью метода сканирующей электронной микроскопии. Определение гранулометрического состава (фиг.3) проводили с помощью метода лазерного светорассеяния.

Примеры конкретного выполнения способа.

Пример1.

Этот пример относится к сухому способу удаления мелкой фракции порошка ГАП. Образец гидроксиапатита после размола и высокотемпературного обжига помещается на сито с размером ячеек 40 мкм, проводится отсев мелкой фракции сухим способом по ГОСТ18318-94.

Пример 2.

Этот пример относится к мокрому способу удаления мелкой фракции порошка ГАП. Образец гидроксиапатита после размола и высокотемпературного обжига помещается на сито с размером ячеек 40 мкм, проводится отсев мелкой фракции мокрым способом до чистых промывных вод.

Пример 3.

Этот пример относится к комбинированному способу удаления мелкой фракции порошка ГАП. Образец гидроксиапатита после размола и высокотемпературного обжига помещается на сито с размером ячеек 40 мкм, проводится отсев мелкой фракции мокрым способом до чистых промывных вод, а затем, после сушки порошка на сите при температуре 105-110°С, проводится сухой доотсев мелких частиц до постоянного веса по ГОСТ 18318-94.

Таблица 1. Содержание фракции менее 15 мкм и текучесть порошков ГАП при разных способах отсева.
Отсев Сухой Мокрый Мокро-сухой
Содержание фракции менее 15 мкм 11-15% 7-9% 2-4%
Текучесть, сек/50 г 73-70 62-60 57-55

Способ получения порошка гидроксиапатита повышенной текучести, включающий размол гидроксиапатита до получения порошка, обжиг в высокотемпературной печи в атмосфере воздуха с последующим отсевом, отличающийся тем, что для получения порошка гидроксиапатита высокой текучести размол механохимически синтезированного гидроксиапатита производится в механической ступке до получения порошка с размером частиц не более 90 мкм, обжиг производят при 1200°С, отсев мелкой фракции на сите с размером ячеек 40 мкм проводится сухим, мокрым или мокро-сухим способами.



 

Похожие патенты:
Изобретение может быть использовано в целлюлозно-бумажной, пищевой, парфюмерно-косметической, медицинской, фармацевтической, химической, резинотехнической, лакокрасочной отраслях промышленности. Способ производства мела химически осажденного включает измельчение кальцита и нагревание его в печи.
Изобретение относится к химической отрасли, а именно – к переработке отходов предприятий химической промышленности, в частности – к получению минерализатора на основе фторида кальция, используемого в качестве добавки к сырьевым смесям при получении цементного клинкера. Способ получения минерализатора на основе фторида кальция заключается в смешивании основного компонента с кальцийсодержащим реагентом, получении готового продукта, в качестве основного компонента используют шлам фторида кальция, являющийся отходом производства фосфорной кислоты, а в качестве кальцийсодержащего реагента используют либо негашёную известь, либо полугидрат или дигидрат сульфата кальция, при этом в процессе смешивания осуществляют перемешивание основного компонента с кальцийсодержащим реагентом до получения готового продукта в виде однородной пластической массы, причём соотношение основного компонента к кальцийсодержащему реагенту составляет 1:(0,5-1,0), а содержание в готовом продукте фторида кальция составляет не менее 20%, содержание воды не более 43%, а значение кислотности – не ниже 7,0.

Изобретение может быть использовано в химической промышленности. Способ производства высокопористой гашеной извести включает подачу негашеной извести, подачу воды в зону загрузки гидратора, гашение негашеной извести в зоне гашения гидратора и дозревание в зоне созревания гидратора для образования гашеной извести.

Изобретение относится к технологии получения сложных оксидов, имеющих слоистую структуру Руддлесдена-Поппера (РП) и относящихся к гомологической фазе АО⋅(АВО3)2. Способ получения сложного оксида манганита BaLn2Mn2O7+δ, где Ln выбран из группы Nd, Pr, Gd, включает подготовку шихты, содержащей оксид марганца, оксид редкоземельного металла и оксид бария, смешивание исходных компонентов, прессование полученной смеси в таблетки и последующий двухстадийный отжиг в газовой среде, при этом указанные компоненты взяты соответственно атомному соотношению Ba:Ln:Mn=1,0:1,9:2,0, а отжиг проводят в кислородсодержащей газовой среде при поддержании заданного значения давления кислорода в диапазоне Ро2=10-5,0÷10-5,2 атм, причем на первой стадии нагрев осуществляют до температуры 1173К с выдержкой в течение 24 часов, а на второй стадии - до температуры 1573К с выдержкой в течение 48 часов.

Изобретение относится к области синтеза мелкокристаллического титаната бария, используемого для изготовления керамических конденсаторов. Способ включает обработку смеси диоксида титана и барийсодержащего реагента в среде на основе пара воды при повышенных температуре и давлении, при этом в качестве барийсодержащего реагента используется моногидрат нитрита бария Ba(NO2)2⋅H2O и обработку реагентов ведут в среде смеси пара воды и аммиака; смесь порошков моногидрата нитрита бария и оксида титана берут в мольном отношении [Ва(NO2)2⋅Н2O]/ТiO2 от 1,0 до 1,3; в реакционном пространстве мольное отношение NH4OH/Н2О=1/5; термообработку смеси реагентов паром, содержащим аммиак, ведут в течение времени от 1 до 16 часов в изотермических условиях при температуре, выбранной в интервале от 250 до 400°С со скоростью нагрева в интервале 50-100°С/ч и давлении пара воды от 3,98 до 26,1 МПа.

Изобретение может быть использовано в химической промышленности. Способ сухого гашения оксидов кальция и магния из кальциево-магниевого соединения, содержащего, по меньшей мере, 10 мас.% MgO по отношению к суммарной массе вышеупомянутого кальциево-магниевого соединения включает загрузку кальциево-магниевого соединения, содержащего MgO, и водной фазы в оборудование для гашения.

Изобретение может быть использовано в химической промышленности. Способ мокрого гашения оксидов кальция и магния известково-магнезиального соединения, содержащего по меньшей мере 10 масс.% MgO по отношению к общей массе известково-магнезиального соединения, включает подачу известково-магнезиального соединения и водной фазы в оборудование для гашения.
Изобретение относится к химической промышленности и может быть использовано при изготовлении материалов для электроники, электротехники, а также катализаторов. Сначала формируют порошок предшественника соединения типа майенита гидротермальной обработкой смеси порошка исходных материалов соединения типа майенита и воды.

Изобретение относится к области синтеза неорганических материалов, а именно титаната бария, используемого в качестве сырья для изготовления сегнетоэлектрической керамики. Способ получения мелкокристаллического титаната бария включает обработку в реакторе в статическом режиме смеси порошков диоксида титана и оксида бария паром воды в сверхкритических условиях: при температуре от 380 до 420°С и давлении от 22,5 до 30,5 МПа, в течение 16-48 часов, после чего реактор охлаждают до комнатной температуры, полученный титанат бария сначала высушивают при температуре 70±20°С в течение 10-12 ч, промывают раствором уксусной кислоты с концентрацией 5-10 мас.%, затем дистиллированной водой и снова высушивают при температуре 70±20°С до постоянного веса.
Изобретение может быть использовано в неорганической химии. Водная известково-магнезиальная суспензия содержит твердые частицы, соответствующие общей формуле аСа(ОН)2⋅bMg(ОН)2⋅cMgO⋅dI, в которой a, b и с представляют собой массовые доли, сумма которых составляет от 90 до 100%, I представляет собой материал, который может содержать примеси, выбранные из материалов на основе SiO2, Al2O3, Fe2O3, MnO, Р2О5 SO3, оксида кальция, СаСО3 и MgCO3, a d составляет от 0 до 10 мас.%, в водной среде.

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в качестве исходного компонента для изготовления биосовместимого материала для внутрикостной имплантации, для изготовления композиции для реставрации или лечения кариозных поражений зубов в стоматологии.
Наверх