Струйная насосная установка

Изобретение относится к области струйной техники, включая струйные насосы и компрессоры, струйные системы управления и струйные реактивные движители для систем динамического позиционирования. В частности, заявляемое техническое решение может быть использовано в нефтяной и газовой отраслях промышленности для повышения эффективности технологий при добыче и переработке углеводородов, в том числе в условиях разработки морских месторождений. Предлагается струйная насосная установка, содержащая источники рабочей среды и перекачиваемой среды, струйный насос, оснащенный системой сопел, гидравлически соединенных по параллельной схеме и размещенных на входе в рабочую камеру с образованием кольцевого канала, в котором размещены П-образные карманы с образованием в них изолированных друг от друга подводящих каналов, в каждом из которых установлено одно сопло и которые гидравлически связывают рабочую камеру с источниками перекачиваемой среды через запорные регулирующие устройства, при этом источник рабочей среды гидравлически связан с входами сопел, а источники перекачиваемой среды гидравлически соединены с кольцевым каналом. 3 ил.

 

Изобретение относится к области струйной техники, включая струйные насосы и компрессоры, струйные системы управления и струйные реактивные движители для систем динамического позиционирования. В частности, заявляемое техническое решение может быть использовано в нефтяной и газовой промышленности для повышения эффективности технологий при добыче и переработке углеводородов, в том числе в условиях разработки морских месторождений.

Известна струйная насосная установка, содержащая рабочую камеру, приемный канал перекачиваемой среды и сопло, установленное с возможностью осевого перемещения и гидравлически связанное с силовым насосом. Установка снабжена дополнительным силовым насосом с приемным каналом и размещенной между соплом и рабочей камерой соосно с ними диафрагмой с образованием двух радиальных кольцевых каналов, один из которых сообщен с приемным каналом перекачиваемой среды, а другой с приемным каналом дополнительного силового насоса (RU 2100659, 1997).

Из известных технических решений наиболее близким к предлагаемому является струйная насосная установка, содержащая источник рабочей жидкости, источник перекачиваемой среды, струйный насос, оснащенный соплом, размещенным перед входом в рабочую камеру с образованием кольцевого канала между соплом и входом рабочей камеры.

Источник рабочей жидкости гидравлически связан с входом сопла, а источник перекачиваемой среды гидравлически связан с кольцевым каналом. В кольцевом канале размещены направляющие лопатки с образованием между лопатками изолированных друг от друга подводящих каналов, которые гидравлически связывают рабочую камеру, по крайней мере, с одним дополнительным источником перекачиваемой (или рабочей) среды (RU 116190, 2012).

Недостатком известных технических решений является узкий диапазон регулирования рабочих параметров потока на выходе рабочей камеры, что ограничивает область применения насосной установки.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является расширение диапазона рабочих параметров потока на выходе рабочей камеры.

Указанная проблема решается тем, что струйная насосная установка содержит источники рабочей среды и перекачиваемой среды, струйный насос, оснащенный системой сопел, гидравлически соединенных по параллельной схеме и размещенных на входе в рабочую камеру с образованием кольцевого канала, в котором размещены П-образные карманы с образованием в них изолированных друг от друга подводящих каналов, в каждом из которых установлено одно сопло и которые гидравлически связывают рабочую камеру с источниками перекачиваемой среды через запорные регулирующие устройства, при этом источник рабочей среды гидравлически связан с входами сопел, а источники перекачиваемой среды гидравлически соединены с кольцевым каналом.

Достигаемый технический результат заключается в обеспечении контролируемого перераспределения энергии потока по площади выходного канала в рабочей камере с возможностью регулирования параметров количества движения потока и параметров эпюры скоростей в поперечном сечении на выходе рабочей камеры.

Сущность описываемой полезной модели поясняется чертежами: на фиг.1 показана схема струйной насосной установки с цилиндрической рабочей камерой; на фиг.2 представлено сечение А-А; на фиг.3 показана схема струйной насосной установки с конической рабочей камерой.

Предлагаемая струйная насосная установка содержит источник рабочей среды 1, источники перекачиваемой среды 2, струйный насос, оснащенный системой сопел 3, гидравлически соединенных по параллельной схеме и размещенных на входе в рабочую камеру 4 с образованием кольцевого канала 5 на входе рабочей камеры 4. Источник рабочей среды 1 гидравлически связан с входами сопел 3.

В кольцевом канале 5 размещены П-образные карманы 6 с образованием в них изолированных друг от друга подводящих каналов 7,в каждом из которых установлено одно из сопел 3, и которые гидравлически связывают рабочую камеру 4 с источниками перекачиваемой среды 2 через запорные регулирующие устройства8.

При этом источники перекачиваемой среды 2 гидравлически связаны с кольцевым каналом 5.

Рабочая камера 4 может иметь различную геометрическую форму.

Для примера, на фигуре 3 показан вариант исполнения установки с коническим выходным участком у рабочей камеры 4. Рабочая камера 4 может быть цилиндрической (как на фигуре 1), может быть кольцевой. А в поперечном сечении рабочая камера 4 и сопло 3 могут иметь форму квадрата или треугольника, или другую нетрадиционную форму. Проточные каналы в группе сопел 3 и в группе подводящих каналов 7 могут формировать сетчатую структуру или сетку. В общепринятом понимании сетка - это представление более крупной геометрической области меньшими дискретными ячейками. К примеру, сопла больших размеров заменяются на набор более мелких сопел, которые связаны между собой с образованием проточных каналов в виде сетчатой структуры.

Струйная насосная установка работает следующим образом.

Источник рабочей среды 1 обеспечивает подачу рабочей среды в сопла 3, размещенные на входе в рабочую камеру 4. Перекачиваемая среда от источников перекачиваемой среды 2 подводится к кольцевому каналу 5 и далее к струе рабочей среды, проходя через изолированные друг от друга подводящие каналы 7, которые гидравлически связывают рабочую камеру 4 с источниками перекачиваемой среды 2. Перемешивание перекачиваемой среды с рабочей средой начинается в изолированных друг от друга подводящих каналах 7, поскольку сопло 3 выполнено многоканальным в виде системы сопел, гидравлически соединенных по параллельной схеме, а каждое сопло 3 размещено в отдельном изолированном подводящем канале 7, сообщающимся с источником перекачиваемой среды 2 через отдельное запорное регулирующее устройство 8. Далее потоки из подводящих каналов 7 направляются к выходу рабочей камеры 4. В рабочей камере 4 осуществляется частичное или полное перемешивание рабочей и перекачиваемых сред с учетом решаемой технологической задачи. Рабочей и перекачиваемыми средами может быть жидкость или газ, или газожидкостная смесь с различными соотношениями компонентов. С выхода рабочей камеры 4 смесь рабочей среды и перекачиваемых сред поступает далее в технологическую линию на прием потребителя (на фигурах технологическая линия не показана).

С использованием нескольких запорных регулирующих устройств 8 в изолированных друг от друга подводящих каналах 7 можно обеспечить различные режимы течения: стационарные или нестационарные режимы течения, включая различные варианты импульсных режимов течения. Заявляемое техническое решение позволяет управлять потоками рабочей и перекачиваемой среды, с обеспечением требуемых условий истечения на выходе рабочей камеры 4. Распределение скорости потока на выходе рабочей камеры 4 может быть равномерным или неравномерным. Скорость потока в отдельных точках на выходе рабочей камеры 4 может быть постоянной во времени или переменной - в зависимости от решаемой технологической задачи. Запорные регулирующие устройства 8 могут управляться дистанционно и могут быть объединены в единую цифровую систему управления, функционирующую в соответствии с определенной компьютерной программой, с учетом специфики решаемой технологической задачи.

Таким образом, предлагаемое техническое решение обеспечивает контролируемое перераспределение энергии потока по отдельным участкам на выходе из рабочей камеры и, соответственно, позволяет регулировать параметры количества движения потока и параметры эпюры скоростей в поперечном сечении на выходе рабочей камеры.

Струйная насосная установка, содержащая источники рабочей среды и перекачиваемой среды, струйный насос, оснащенный системой сопел, гидравлически соединенных по параллельной схеме и размещенных на входе в рабочую камеру с образованием кольцевого канала, в котором размещены П-образные карманы с образованием в них изолированных друг от друга подводящих каналов, в каждом из которых установлено одно сопло и которые гидравлически связывают рабочую камеру с источниками перекачиваемой среды через запорные регулирующие устройства, при этом источник рабочей среды гидравлически связан с входами сопел, а источники перекачиваемой среды гидравлически соединены с кольцевым каналом.



 

Похожие патенты:

Изобретение относится к области струйной техники, включая струйные насосы и компрессоры, струйные системы управления и струйные реактивные движители для систем динамического позиционирования. В частности, заявляемое техническое решение может быть использовано в нефтяной и газовой промышленности для повышения эффективности технологий при добыче и переработке углеводородов, в том числе в условиях разработки морских месторождений.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению коллекторских свойств прискважинной зоны скважин и вовлечения в разработку трудноизвлекаемых и нерентабельных запасов углеводородов. Технический результат - повышение эффективности обработки призабойной зоны скважин.

Группа изобретений относится к горному делу, добыче нефти и газа, в частности к вариантам способа и устройства для ремонта нефтяных и/или газовых скважин, включающим перфорацию и гидравлический разрыв пласта (далее ГРП). В первом варианте способа осуществляется спуск в скважину устройства на глубину, соответствующую продуктивному пласту, подача под давлением рабочей жидкости в полость насосно-компрессорных труб и перфоратор, посредством разрушающих элементов которого обеспечивается гидравлическое сообщение эксплуатационной колонны с пластом на по крайней мере одном уровне продуктивного пласта.

Группа изобретений относится к области горного дела и, в частности, к устройствам добычи жидких или газообразных сред из скважин, снабженных струйными насосами. Технический результат - повышение уровня ремонтопригодности устройства и повышение надежности эксплуатации добывающих скважин.

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. Способ включает перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером так, чтобы нижний конец колонны труб находился на уровне кровли пласта, посадку пакера над кровлей перфорированного пласта, определение общего объема гелированной жидкости разрыва перед ГРП, закачку в подпакерную зону гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и образование трещин в пласте с последующим их закреплением в пласте закачкой жидкости-носителя с проппантом, выдержку скважины на стравливание давления, распакеровку и извлечение пакера с колонной труб из скважины.

Насос предназначен для промывки скважин. Насос содержит конусообразный корпус, внутри которого параллельно расположены канал подвода активной жидкостной среды и активное сопло, сопряженное через боковой паз с камерой смешения, соединенной с трубопроводом отвода смеси сред, при этом внизу конусообразного корпуса установлена функциональная насадка, выполненная в виде цилиндрического корпуса насадок, горизонтально разделенного на две части, при этом верхняя часть непосредственно примыкает к конусообразному корпусу и через наклонные патрубки разных диаметров соединена с активным соплом и каналом подвода активной жидкостной среды, а нижняя часть, равная основному диаметру конусообразного корпуса, содержит по четыре радиальные насадки, расположенные по периметру, и одну насадку, расположенную по оси функциональной вставки.

Изобретение относится к струйным насосам и может быть использовано в нефтедобывающих установках. Эжектор, устанавливаемый в колонне насосно-компрессорных труб, оснащенной пакером, с возможностью удаления его из скважины, содержит корпус с радиальными отверстиями, аксиальные корпусу сопло, приемную камеру, камеру смешения с диффузором, обратный клапан, взаимодействующий с седлом, распределитель потоков, включающий аксиальный, периферийные и радиальные каналы, раздвижной узел, содержащий раздвижную цангу, упорную втулку, которая оснащена фильтром, и переходник, соединенный с головкой для захвата эжектора монтажным инструментом, в которой выполнены каналы и расточка.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при механизированной добыче нефти в условиях повышенного газосодержания или выноса механических примесей. Насос устанавливается в насосно-компрессорных трубах на выходе погружной насосной установки для добычи нефти.

Изобретение относится к области насосной техники. .

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения производительности призабойной зоны пластов. .
Наверх