Способ получения солевой композиции на основе lif-bef2

Изобретение может быть использовано для получения солевых композиций на основе LiF-BeF2, которые могут быть применены в качестве рабочих жидкостей при эксплуатации жидкосолевых реакторов (ЖСР). Способ включает плавление смеси солей, содержащей фторид лития и фторид свинца, взятые в количестве, соответствующем эвтектическому составу получаемой композиции. Смесь плавят при температуре 550-900°С, выдерживают не менее 30 минут. В полученный расплав добавляют металлический бериллий в количестве, большем количества свинца, содержащегося во фториде свинца, и выдерживают в расплаве до содержания остаточного свинца в соли не более 0,001 мас. %. Изобретение позволяет сократить количество стадий процесса получения солевой композиции на основе LiF-BeF2, исключить неэкологичное получение фторида бериллия, расширить сырьевую базу за счет использования отходов бериллия. 1 з.п. ф-лы.

 

Изобретение относится к атомной энергетике и может быть использовано для получения солевых композиций на основе LiF-BeF2, которые могут быть применены в качестве рабочих жидкостей при эксплуатации жидкосолевых реакторов (ЖСР).

Известен способ получения солевой композиции на основе LiF-BeF2, в котором переплавляют смесь плавленого фторида бериллия с фторидом лития (В.Е. Матясова, М.Л. Коцарь, С.Л. Кочубеева, В.И. Никонов Получение бериллиевых материалов для ядерной и термоядерной энергетики из бериллийсодержащих отходов /(ВАНТ. 2013. №2(84) с. 110-117)). Фторид бериллия, необходимый для получения данной солевой композиции, получают известным способом из раствора фторида бериллия в плавиковой кислоте, при этом способ получения солевой композиции заключается в ведении в подготовленный раствор добавки фторида аммония в количестве, обеспечивающем получение молярного отношения. F/Be = 2,06-2,18 с последующим выпариванием раствора под вакуумом при температуре 360-380°С в течение 1,5 ч. Образованный на стадии выпаривания порошок выдерживают при температуре до 900°С в течение 5-7 минут В результате получают плавленый фторид бериллия требуемого качества, который смешивают с фторидом лития и переплавляют для получения соли FLiBe (LiF-BeF2).

Таким образом, процесс получения фторида бериллия является многостадийным, значительное количество стадий которого требует сложного аппаратурного оформления, больших затрат энергии. Кроме того, процесс получения фторида бериллия из его раствора в плавиковой кислоте не соответствует требованиям экологической безопасности. В первую очередь это относится к стадии выпаривания и функционирования систем конденсации воды с аэрозолями плавиковой кислоты.

Задачей изобретения является разработка экологически чистого, относительно недорогого способа получения солевой композиции FLiBe (LiF-BeF2).

Для этого предложен способ, как и прототип, включающий плавление смеси солей, содержащей фторид лития. Новый способ отличается тем, что используют смесь, содержащую фторид лития и фторид свинца, взятые в количестве, соответствующем эвтектическому составу получаемой композиции, смесь плавят при температуре 550-900°С, выдерживают не менее 30 минут, в полученный расплав добавляют металлический бериллий в количестве, большем количества свинца, содержащегося во фториде свинца, и выдерживают в расплаве до содержания остаточного свинца в соли не более 0,001 мас. %.

Способ отличается также тем, что в расплав, полученный заявленным способом, добавляют фторид лития в количестве, необходимом для получения солевой композиции заданного состава, выдерживают до получения солевой композиции заданного состава, после чего расплав охлаждают до комнатной температуры и отделяют свинец.

При введении в расплав LiF-PbF2 металлического бериллия в количестве, большем количества свинца, содержащегося во фториде свинца, металлический бериллий переходит в расплав по реакции:

После завершения процесса металлический свинец скапливается на дне контейнера с расплавом. Над металлическим свинцом находится солевая фаза 38 мол. % LiF - 62 мол. % BeF2. Нижний температурный предел расплавления смеси солей лимитирован температурой плавления смеси LiF-BeF2, верхний обусловлен началом интенсивного испарения сред. Процесс протекает в одну стадию, при температурном режиме, предоставляющем техническую возможность его реализации с использованием одного плавильного аппарата (бокса с инертной атмосферой). Источником металлического бериллия для заявленного способа могут служить его отходы при механической обработке деталей из бериллия и его сплавов, а также детали вышедших из эксплуатации аппаратов и устройств, что повышает экономическую и экологическую привлекательность способа, притом, что переработка бериллиевых металлических отходов является важным направлением рециклирования бериллия. Таким образом, предложенный способ получения солевой композиции на основе LiF-BeF2 малостадиен, не требует отдельного процесса получения фторида бериллия, более того, допускает использование отходов металлического бериллия, является простым и безопасным.

Новый технический результат, достигаемый заявленным способом, заключается в сокращении стадий процесса получения солевой композиции на основе LiF-BeF2, исключении неэкологичного получения фторида бериллия, расширении сырьевой базы за счет использования отходов бериллия.

Кроме того, на основе расплава, полученного заявленным способом, можно получать солевые композиции различного состава. Для этого в него добавляют фторид лития в количестве, необходимом для получения солевой композиции заданного состава, выдерживают до получения солевой композиции заданного состава, после чего расплав охлаждают до комнатной температуры и отделяют свинец.

Количество фторида лития, необходимого для получения солевой композиции заданного состава, рассчитывают известным образом, описанным, например, в источнике (Растворы. Способы приготовления растворов: учебное пособие /Л.Д. Агеева, С.А. Безрукова-Северск: Изд-во СТИ НИЯУ МИФИ, 2017. - 45 с).

Изобретение иллюстрируется следующими примерами приготовления солевых композиций на основе LiF-BeF2.

Пример 1

Навеску из смеси индивидуальных солей LiF и PbF2 массой 150 г, количественно соответствующую эвтектическому составу расплава (38 мол. % LiF - 62 мол. % PbF2), размещали в стеклоуглеродном контейнере внутри печи. Над контейнером с солью создавали атмосферу аргона, нагревали до 550°С и выдерживали при этой температуре в течение 30 минут. В полученный расплав добавляли металлический бериллий в количестве 7 г, рассчитанную известным образом [2], что больше количества свинца во фториде свинца вышеуказанной навески LiF-PbF2. По истечении 80 минут остатки бериллия удаляли. В течение этого времени происходила замена РЬ на Be в катионной подрешетке расплава, свинец скапливался на дне контейнера. Методами рентгенофазового анализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получена солевая композиция 38 мол. % LiF - 62 мол. % BeF2 (содержание свинца в соли 0,000465 мас. %), которую можно применять в качестве теплоносителя первого контура реактора ЖСР.

Пример 2

Навеску из смеси индивидуальных солей LiF и PbF2, как в примере 1, размещали в стеклоуглеродном контейнере внутри печи. Над контейнером с солью создавали инертную атмосферу аргона, нагревали до 800°С и выдерживали при этой температуре в течение 30 минут. В полученный расплав добавляли металлический бериллий в количестве 10 г, что больше количества свинца во фториде свинца вышеуказанной навески LiF-PbF2. По истечении 100 минут остатки бериллия удаляли из расплава. В течение этого времени происходила замена РЬ на Be в катионной подрешетке расплава, свинец скапливался на дне контейнера.

Методами рентгенофазового анализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получена солевая композиция 38 мол. % LiF - 62 мол. % BeF2 (содержание свинца в соли 0,000465 мас. %), которую можно применять в качестве теплоносителя первого контура реактора ЖСР.

Пример 3

Навеску из смеси индивидуальных солей LiF и PbF2, как в примере 1, размещали в стеклоуглеродном контейнере внутри печи. Над контейнером с солью создавали инертную атмосферу аргона, нагревали до 900°С и выдерживали при этой температуре в течение 30 минут. В полученный расплав добавляли металлический бериллий в количестве 14 г, что количества свинца во фториде свинца навески вышеуказанной LiF-PbF2. По истечении 100 минут остатки бериллия удаляли из расплава. В течение этого времени происходила замена РЬ на Be в катионной подрешетке расплава, свинец скапливался на дне контейнера.

Методами рентгенофазового анализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получена солевая композиция 38 мол. % LiF - 62 мол. % BeF2 (содержание свинца в соли 0,000465 мас. %), которую можно применять в качестве теплоносителя первого контура реактора ЖСР.

Пример 4

Для получения солевой композиции 73 мол. % LiF - 27 мол. % BeF2 в расплав, полученный по примеру 1 добавляли LiF, чем доводили концентрацию фторида лития до 73 мол. %, выдерживали в течение 1 часа, охлаждали до комнатной температуры и отделяли свинец. Методами рентгенофазового анализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получена солевая композиция 73 мол. LiF - 27 мол. % BeF2 (содержание свинца в соли 0,000465 мас. %), которую можно применять в качестве в качестве топливной соли первого контура реактора ЖСР.

Пример 5

Для получения солевой композиции 66,6 мол. % LiF - 33,4 мол. % BeF2 в расплав, полученный по примеру 1, добавляли LiF, чем доводили концентрацию фторида лития до 66,6 мол. %, выдерживали в течение 1 часа, охлаждали до комнатной температуры и отделяли свинец. Методами рентгенофазового анализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получена солевая композиция 66,6 мол. % LiF - 33,4 мол. % BeF2 (содержание свинца в соли 0,000365 мас. %), которую можно применять в качестве теплоносителя первого контура ЖСР.

Таким образом, заявлен экологически чистый, относительно недорогой способ получения солевой композиции FLiBe (LiF-BeF2), которую можно применять в качестве рабочих жидкостей при эксплуатации жидко-солевых реакторов. Содержание свинца в полученной солевой композиции, приведенное в примерах 1-5, подтверждает достижение полного перехода металлического бериллия в расплав смеси фторида лития и фторида свинца.

1. Способ получения солевой композиции на основе LiF-BeF2, включающий плавление смеси солей, содержащей фторид лития, отличающийся тем, что используют смесь, содержащую фторид лития и фторид свинца, взятые в количестве, соответствующем эвтектическому составу получаемой композиции, смесь плавят при температуре 550-900°С, выдерживают не менее 30 минут, в полученный расплав добавляют металлический бериллий в количестве, большем количества свинца, содержащегося во фториде свинца, и выдерживают в расплаве до содержания остаточного свинца в соли не более 0,001 мас. %.

2. Способ по п. 1, отличающийся тем, что в расплав, полученный по п. 1, добавляют фторид лития в количестве, необходимом для получения солевой композиции заданного состава, выдерживают до получения солевой композиции заданного состава, после чего расплав охлаждают до комнатной температуры и отделяют свинец.



 

Похожие патенты:

Изобретение относится к атомной энергетике и может быть использовано для получения топливной соли на основе фторидов лития и бериллия, предназначенной для введения в контур энергоблока жидкосолевых реакторов. Способ включает использование смеси, содержащей тетрафторбериллат аммония и фторид лития, взятые в количестве, соответствующем эвтектическому составу получаемой соли, нагревают в токе аргона до температуры 230-250°С, выдерживают до полного разложения тетрафторбериллата аммония, затем температуру нагрева смеси поднимают выше температуры плавления Li2BeF4, но не выше 530°С.

Изобретение относится к способу электролитического рафинирования металлического ядерного топлива. Способ включает селективное анодное растворение компонентов ядерного топлива в контейнере с расплавленным электролитом LiCl-KCl, содержащем хлориды актиноидов, при температуре не ниже 500°С, селективное катодное электровыделение актиноидов на твердом стальном катоде, при этом в качестве исходного анодного материала используют металлическое ядерное топливо, при этом электролитическое рафинирование осуществляют при катодной плотности тока не ниже 90% от предельного значения тока выделения урана, значение катодной плотности тока поддерживают путем перемещения стального катода относительно поверхности электролита с постоянной скоростью, определяемой токовой нагрузкой и потенциалом катода.

Изобретение относится к ядерной энергетике и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива, в частности в технологиях замкнутого ядерного топливного цикла. Способ включает фрагментацию, выдержку фрагментов тепловыделяющих элементов с отработавшим нитридным ядерным топливом в атмосфере азота при температуре не менее 500°С в реакторе.

Изобретение относится к ядерной энергетике и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива, в частности, в технологиях замкнутого ядерного топливного цикла. Способ включает высокотемпературную обработку фрагментов тепловыделяющих элементов с отработавшим нитридным ядерным топливом в окислительной атмосфере, в ходе которой фрагменты тепловыделяющих элементов с отработавшим нитридным ядерным топливом нагревают до 800°С и выдерживают в реакторе при этой температуре в атмосфере азота.

Изобретение относится к ядерной энергетике, в частности к способам переработки оксидного ядерного топлива, и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает электролиз расплава LiCl с добавкой не менее 1 мас.% Li2O при температуре не выше 700°С с использованием инертного катода и кислородвыделяющего анода из смеси NiO-Li2O.

Изобретение относится к пирохимической переработке отработавшего ядерного топлива (ОЯТ) и может быть использовано в процессе переработки металлического продукта операции электролитического рафинирования отработавшего ядерного топлива, содержащего актиниды и благородные металлы, путем включения в технологию замкнутого ядерного топливного цикла (ЗЯТЦ) реакторов на быстрых нейтронах.
Изобретение относится к способу переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ включает растворение нитридного ОЯТ в солевом расплаве и последующее выделение актинидов осаждением за счет добавления нитрида лития в солевой расплав.

Изобретение относится к радиохимической технологии, в частности к способам разделения нептуния и плутония экстракционными методами при переработке отработавшего ядерного топлива. Способ включает обработку исходного раствора, содержащего плутоний, нептуний реагентом-восстановителем, который восстанавливает плутоний до трехвалентного состояния, а нептуний до четырехвалентного.

Изобретение относится к реакторам на расплавах солей, в которых расплав соли может включать продукты деления ядер. Механизм химического разделения включает приемник расплава солей с находящимся в нем расплавом солей; приемник растворителя, в котором находится растворитель; электрод и механизм перемещения электродов.

Изобретение относится к области рециклирования ядерных энергетических материалов. Способ восстановления изотопного состава регенерированного урана выгоревшего ядерного топлива для повторного использования в ядерном реакторе основан на осуществлении изотопного восстановления гексафторида регенерированного урана в двойном разделительном газоцентрифужном каскаде с подачей во второй каскад гексафторида урана-разбавителя и смешиванием выделенного в каскаде гексафторида урана с гексафторидом урана-разбавителя.
Наверх