Патенты автора Архипов Павел Александрович (RU)

Изобретение относится к ракетно-космической технике, а именно к двигательным установкам. Устройство системы охлаждения двигательной установки включает в себя центральное тело, коллектор с циркуляционной схемой движения хладагента с выбросом в окружающую среду, согласно изобретению центральное тело состоит из электроизолирующего элемента, внешнего анода, внутренней и внешней поверхностей, на которые нанесен термоэмиссионный слой, внутренний и внешний термоэмиссионные слои вместе с центральным телом образуют катод, который электрически последовательно соединен с внутренним и внешним анодами через источник напряжения, внутренний анод через электроизолирующие элементы соединен с внутренним термоэмиссионным слоем катода на расстоянии до 0,3 мм от внутренней поверхности центрального тела, внутренний анод и внутренний термоэмиссионный слой катода образуют вакуумированную герметичную полость, внутри которой размещена добавка из легкоионизируемого элемента, вакуумированная герметичная полость через электроизолирующий элемент соединена с внешним анодом, который расположен по ходу течения продуктов сгорания по поверхности центрального тела. В качестве хладагента используется гелий. В качестве добавки из легкоионизируемого элемента используется цезий. Изобретение обеспечивает снижение массы хладагента в единицу времени, а также увеличение надежности многокамерной двигательной установки с центральным телом за счет его термоэмиссионного охлаждения. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для получения солевых композиций на основе LiF-BeF2, которые могут быть применены в качестве рабочих жидкостей при эксплуатации жидкосолевых реакторов (ЖСР). Способ включает плавление смеси солей, содержащей фторид лития и фторид свинца, взятые в количестве, соответствующем эвтектическому составу получаемой композиции. Смесь плавят при температуре 550-900°С, выдерживают не менее 30 минут. В полученный расплав добавляют металлический бериллий в количестве, большем количества свинца, содержащегося во фториде свинца, и выдерживают в расплаве до содержания остаточного свинца в соли не более 0,001 мас. %. Изобретение позволяет сократить количество стадий процесса получения солевой композиции на основе LiF-BeF2, исключить неэкологичное получение фторида бериллия, расширить сырьевую базу за счет использования отходов бериллия. 1 з.п. ф-лы.

Изобретение относится к ракетно-космической технике, а именно к устройству двигательных установок. Система охлаждения центрального тела сопла многокамерной двигательной установки включает в себя коллектор с хладагентом, который расположен внутри центрального тела и гидравлически связан с окружающей средой, при этом в тепловом контакте с коллектором электрически изолирован от внешней поверхности центрального тела анод, анод на расстоянии от 10-4 см до 1 см через электроизолирующие элементы соединен с наружной поверхностью центрального тела, представляющей катод, анод и катод образуют вакуумированную герметичную полость с мелкодисперсным легкоионизируемым с малой работой выхода порошком внутри нее, объёмной плотностью в количестве, варьируемом от 1,18⋅20-5 кг/м3 до 1,18⋅20-2 кг/м3, электроизолирующие элементы, которые расположены и жестко скреплены с одной из стенок вакуумированной герметичной полости между катодом и анодом. В качестве хладагента используется гелий. В качестве мелкодисперсного легкоионизируемого с малой работой выхода порошка используется цезий. Изобретение обеспечивает снижение массы хладагента в единицу времени за счет термоэмиссионного охлаждения. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и предназначено для повышения эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Заявлено устройство для контроля температуры рабочих лопаток газовой турбины, содержащее установленный в корпусе статора прибор измерения. На поверхности лопатки турбины нанесен термоэмиссионный слой из материала с низкой работой выхода электронов. Лопатка турбины с термоэмиссионным слоем в данном случае представляет собой катод. Анод устанавливается за лопаткой турбины в области задней ее кромки и через измерительный комплекс и источник напряжения связан с катодом. При этом заявляемое устройство содержит емкость для хранения веществ с низким потенциалом ионизации (ВПНИ), форсунку подачи ВПНИ гидравлически через трубопровод и регулируемый клапан, соединенную с емкостью для хранения ВПНИ, причем регулируемый клапан электрически соединен с сигнальным выходом блока управления, выходное отверстие форсунки подачи веществ с низким потенциалом ионизации расположено заподлицо с поверхностью внутренней стенки статора газотурбинного двигателя. Технический результат - возможность измерения температуры лопатки во время эксплуатации газотурбинных двигателей с высокой точностью, при этом обеспечивается высокая скорость реакции, а также реализована возможностью длительной работы в условиях экстремальных температур за счет охлаждения поверхности, вибраций и высоких давлений. 1 ил.

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например жидкостных ракетных двигателей (ЖРД). Предлагается устройство для измерения температуры сопла ракетного двигателя, которое содержит выполненное из электропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода, при этом эмиссионный слой на поверхности сопла образуют катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, эмиссионный слой выполнен в форме кольца толщиной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс, при этом добавлено устройство хранения и подачи веществ с низким потенциалом ионизации в форме форсунки подачи веществ с низким потенциалом ионизации, расположенной в камере сгорания перед критическим сечением сопла и гидравлически через трубопровод и регулируемый клапан, соединенной с баком для хранения веществ с низким потенциалом ионизации (ВНПИ), причем регулируемый клапан электрически соединен с сигнальным выходом измерительного комплекса, выходное отверстие форсунки подачи веществ с низким потенциалом ионизации расположено заподлицо с поверхностью стенки ЖРД. Технический результат заключается в точности измерения температуры контролируемой поверхности с высокой скоростью реакции. Также реализована возможность длительной работы в условиях экстремальных температур за счет охлаждения поверхности. 1 ил.

Изобретение относится к области аддитивного производства и может быть применено в процессе изготовления физических пространственных изделий, где в качестве механизма связи используется термическая реакция связывания, а в качестве материала используется электропроводящее сырье. Способ трехмерной печати изделий из электропроводящего сырья включает операции подачи в область формирования изделия электропроводящего сырья и воздействия на него энергией от внешнего источника энергии, при этом снижают величину работы выхода электронов области формирования изделия путем доставки к области формирования изделия вещества с низким потенциалом ионизации в концентрации, обеспечивающей заданную долю покрытия веществом поверхности области формирования изделия, соответствующей заданному значению работы выхода электронов поверхности области формирования изделия и подвода к области формирования изделия элемента - анода, соединенного через источник тока с областью формирования изделия проводником, а с анода перенаправляют их через источник напряжения в область формирования изделия, удельную плотность теплового потока, подводимого от внешнего источника энергии, и подачу электропроводящего сырья в область формирования изделия регулируют на основе показаний напряжения и силы тока между анодом и катодом, при этом удельную термоэмиссионное охлаждение регулируют путем изменения напряжения на аноде, анализируя токовые характеристики цепи между анодом и областью формирования изделия, анод снабжен системой отвода тепла. Технический результат заключается в обеспечении снижения температурных напряжений и деформации при формировании изделия из электропроводящего сырья в процессе его 3D-печати. Одновременно повышается скорость формирования изделия за счет отсутствия необходимости печати специальных каналов печатающихся изделий, а также осуществляется контроль заданных технологических режимов во время печати. 3 з.п. ф-лы, 3 ил.

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например жидкостных ракетных двигателей (ЖРД). Предложено устройство для измерения температуры стенок сопла ракетного двигателя, которое содержит выполненное из элетропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода электронов, при этом эмиссионный слой на поверхности сопла образует катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, эмиссионный слой выполнен в форме кольца толщиной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс. Изобретение обеспечивает повышение точности измерения температуры в области критического сечения сопла ЖРД. 1 ил.

Изобретение относится к цветной металлургии, в частности к получению висмута электролитическим способом. Способ включает электролитическое разделение металлов в расплаве галогенидов солей с использованием жидкометаллических катода и анода из висмутистого свинца. В качестве жидкометаллического катода используют металлический свинец. Электролитическое разделение ведут с применением пористой керамической диафрагмы, обеспечивающей одинаковое межполюсное расстояние между электродами, равное 1,0 см, пропитанной расплавом галогенидов, в качестве которого используют эквимолярную смесь хлоридов калия и свинца. Пористая диафрагма препятствует смешиванию анодного и катодного металлов. Процесс ведут при катодной плотности тока, равной анодной плотности тока в интервале от 0,5 до 1,5 А/см2, и температуре 480-530°С. Способ позволяет снизить удельный расход электроэнергии с сохранением скорости процесса получения висмута и устойчивой работой электролизера в технологическом режиме. 1 табл.

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием источника тока электрохимического устройства путем многократной линейной развертки его потенциала в анодную сторону до достижения анодного эффекта и обратно и определение из выборки полученных вольтамперных зависимостей среднего пикового значения отклика тока с последующим определением текущего содержания глинозема по эмпирической зависимости пикового значения отклика тока от содержания глинозема. Электрохимическое устройство содержит рабочий электрод из углеродного материала с диэлектриком из нитрида бора, жестко закрепленный в корундовой трубе, с другого конца которой рабочий электрод соединен с источником тока, а снаружи к корундовой трубе прикреплен противоэлектрод, выполненный из сплавообразующего с алюминием металла, преимущественно из меди, причем расстояние между рабочим электродом и противоэлектродом составляет не менее 5 мм. Обеспечивается повышение точности и упрощение измерений и конструкции электрохимического устройства с возможностью оперативной замены вышедших из строя элементов устройства. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы, изготовленной плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита и непроницаемую для выделившегося катодного свинца. Процесс электролиза проводят при одинаковой катодной и анодной плотностях тока от 0,5 до 1,5 А/см2 и температуре 450-500°C. Техническим результатом является снижение удельного расхода электроэнергии с сохранением степени очистки чернового свинца от примесей и устойчивой работы в технологическом режиме 1 табл.

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму, выполненную в виде емкости для жидкого металла, как один из электродов, другой электрод вертикально размещен вокруг диафрагмы. Емкость диафрагмы выполнена для жидкого катодного свинца, а пространство между корпусом электролизера и диафрагмой является емкостью для заполнения жидким анодным металлом, при этом диафрагма выполнена плазменным напылением порошка корундовой керамики с объемной пористостью, проницаемой для расплавленного солевого электролита, но непроницаемой для катодного свинца. 1 ил.
Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом

Изобретение относится к электролизеру для рафинирования свинца в солевом расплаве

Изобретение относится к электролизеру для рафинирования чернового свинца
Изобретение относится к области цветной металлургии, в частности к получению сплавов свинца, кальция, олова, алюминия, и может быть использовано в аккумуляторной, электрохимической и электротехнической промышленности
Изобретение относится к цветной металлургии, в частности к очистке свинца от примесей

 


Наверх