Летающая лаборатория




Владельцы патента RU 2785261:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области авиационной техники для проведения летных исследований характеристик и демонстрации технологий авиационных силовых установок с малоразмерными двигателями. Летающая лаборатория содержит беспилотный летательный аппарат самолетного типа, состоящий из несущего фюзеляжа, прямоугольного крыла, переднего горизонтального оперения, V-образного хвостового оперения и силовой установки с N авиационными двигателями. Узлы крепления авиационных двигателей установлены на крыле и фюзеляже. Переднее горизонтальное оперение выполнено съемным, а в фюзеляже оборудован отсек с люком для размещения источника энергии. Изобретение направлено на расширение функциональных возможностей летающей лаборатории для проведения летных исследований характеристик и демонстраций технологий авиационных силовых установок с малоразмерными газотурбинными, поршневыми, электрическими двигателями, а также гибридных силовых установок, с учетом типа источника энергии и интерференции элементов силовой установки и планера. 5 ил.

 

Изобретение относится к области авиационной техники, а именно к летающим лабораториям и может использоваться для проведения летных исследований характеристик и демонстраций технологий авиационных силовых установок с малоразмерными двигателями (газотурбинными, поршневыми, электрическими), а также гибридных силовых установок с учетом типа источника энергии и интерференции элементов силовой установки и планера в различных аэродинамических компоновках.

Известна многофункциональная летающая лаборатория на базе транспортного самолета (патент RU 2734170 С1, МПК В64, 13.10.2020), содержащая транспортный самолет с грузовым отсеком и манипулятором. Манипулятор выполнен с гидравлическим приводом, телескопической стрелой, состоящей из перемещающейся горизонтально основной части и отклоняемой части, обеспечивающей поворот и вывод в поток объекта. Разгружающее устройство выполнено в виде разгружающей тележки, механически связанной с основной частью стрелы в точке крепления отклоняемой части стрелы и перемещающейся по рельсовым путям, расположенным в верхней части грузового отсека, за счет и одновременно с перемещением основной части стрелы. На конце отклоняемой части стрелы установлено устройство для крепления и ориентации в потоке объекта испытаний. Также на многофункциональной летающей лаборатории установлена система дистанционного управления и контроля, которая контролирует и управляет ходом эксперимента, как из грузового отсека, так и из гермокабины.

К недостатку этого изобретения следует отнести ограниченные возможности для исследования характеристик авиационных силовых установок.

Известна летающая лаборатория для испытания газотурбинных двигателей (AC SU 1 387 627 А1, 15.12.1991, бюл. №46). Лаборатория состоит из самолета-носителя, содержащего отсек с воздухозаборным каналом и выхлопным коллектором, в котором расположены заслонки, кинематически связанные с приводами, и рамы для крепления испытуемого двигателя.

Недостатком такого изобретения является ограниченные возможности проведения летных испытаний авиационных силовых установок с учетом интерференции силовой установки и планера самолета в штатных местах крепления на самолете.

Наиболее близким по технической сущности к заявляемому изобретению является летающая лаборатория (патент RU 2233771 С1, МПК В64, 10.08.2004), содержащая самолет с верхнерасположенным крылом, тремя штатными двигателями и испытываемой силовой установкой, включающей в себя пилон и закопатированный двигатель с воздухозаборником. Лаборатория снабжена аэродинамически обтекаемой формы переходным модулем, который выполнен с несколькими узлами крепления экспериментальных двигателей на внешней поверхности и установлен между пилоном и закопатированным двигателем.

Недостатком такого изобретения является низкие функциональные возможности летающей лаборатории, обусловленные ограничениями проведения летных исследований характеристик авиационных силовых установок с малоразмерными двигателями (газотурбинными, поршневыми, электрическими), а также гибридных силовых установок, с учетом интерференции силовой установки и планера в различных аэродинамических компоновках.

Техническим результатом изобретения является расширение функциональных возможностей летающей лаборатории для проведения летных исследований характеристик и демонстраций технологий авиационных силовых установок с малоразмерными двигателями (газотурбинными, поршневыми, электрическими), а также гибридных силовых установок, с учетом типа источника энергии и интерференции элементов силовой установки и планера в различных аэродинамических компоновках.

Указанный технический результат достигается тем, что летающая лаборатория содержит беспилотный летательный аппарат самолетного типа, состоящий из несущего фюзеляжа, прямоугольного крыла, переднего горизонтального оперения, V-образного хвостового оперения и силовой установки с N авиационными двигателями, у которого узлы крепления авиационных двигателей установлены на крыле и фюзеляже, переднее горизонтальное оперение выполнено съемным, а в фюзеляже оборудован отсек с люком для размещения источника энергии.

Сущность изобретения заключается в том, что в летающей лаборатории для обеспечения расширения функциональных возможностей проведения исследований характеристик и демонстрации технологий авиационных силовых установок различных схем с различными типами и конструкциями двигателей в полете с учетом типа источника энергии и интерференции элементов силовой установки и планера самолета в различных аэродинамических компоновках разработан планер беспилотного летательного аппарата самолетного типа с узлами крепления авиационных двигателей на крыле и фюзеляже, съемным передним горизонтальным оперением и отсеком с люком в фюзеляже для размещения источника энергии.

Разработанная конструкция планера беспилотного летательного аппарата самолетного типа обеспечивает размещение силовой установки с различным количеством авиационных двигателей за счет наличия узлов крепления авиационных двигателей на крыле и фюзеляже, съемного переднего горизонтального оперения и отсека в фюзеляже со съемным источником энергии изменяемого типа.

Изобретение можно использовать для проведения летных исследований характеристик и демонстрации технологий разрабатываемых авиационных силовых установок различных схем с различными типами и конструкциями двигателей для легких беспилотных летательных аппаратов с учетом типа источника энергии и интерференции элементов силовой установки и планера в различных аэродинамических компоновках.

На фиг. 1-3 продемонстрированы внешний облик разработанного беспилотного летательного аппарата для летающей лаборатории в различных аэродинамических компоновках с обозначением основных конструкционных элементов. На фиг. 1 показаны: 1 - фюзеляж; 2 - прямоугольное крыло; 3 - переднее горизонтальное оперение; 4 - V-образное хвостовое оперение; 5 - двигатели в варианте крыльевого крепления двухдвигательной силовой установки. На фиг. 2 показан двигатель 6 в варианте фюзеляжного крепления одно двигательной силовой установки. На фиг. 3 показан внешний облик разработанного беспилотного летательного аппарата для летающей лаборатории в варианте крыльевого и фюзеляжного крепления трехдвигательной силовой установки.

Назначение основных элементов аэродинамической компоновки беспилотного летательного аппарата самолетного типа согласно [Аэродинамика и динамика полета маневренных самолетов: учебник для курсантов высших военных авиационных училищ летчиков и летного состава строевых частей ВВС, эксплуатирующих маневренные самолеты / Е.С. Галашев, Н.М. Лысенко, С.А. Микоян, В.И. Некрасов, Ю.Н. Нечаев, М.И. Ништ, М.И. Радченко, Г.Ф. Сивков, под. ред. Н.М. Лысенко - М.: Военное издательство, - 1984. - 542 с.], следующее: несущий фюзеляж, служит для соединения крыла и оперения и размещения в нем необходимого оборудования, топлива и полезной нагрузки, крепления двигателя в фюзеляжной компоновке и передней и основных стоек шасси, а также создания дополнительной подъемной силы; крыло является основной несущей поверхностью беспилотного летательного аппарата и служит для создания подъемной силы, необходимой для его держания в воздухе, а также расположения органов управления и двигателей в крыльевой компоновке; V-образное хвостовое оперение обеспечивает устойчивость и управляемость беспилотного летательного аппарата, при фюзеляжном креплении двигателя силовой установки в хвостовой части фюзеляжа переднее горизонтальное оперение обеспечивает балансировку беспилотного летательного аппарата; двигатели силовой установки обеспечивают создание силы тяги, необходимой для перемещения беспилотного летательного аппарата.

Для обеспечения проведения летных исследований характеристик и демонстраций технологий авиационных силовых установок различных схем с различными типами и конструкциями двигателей с учетом интерференции элементов силовой установки и планера в различных аэродинамических компоновках на разработанном беспилотном летательном аппарате самолетного типа предусмотрены три варианта аэродинамической компоновки.

На фиг. 1 показан вариант, обеспечивающий использование двухдвигательной силовой установки беспилотного летательного аппарата с крыльевым расположением одинаковых двигателей. При этом предусмотрено использование съемного переднего горизонтального оперения для компенсации момента, возникающего при отсутствии двигателя в хвостовой части фюзеляжа. В такой аэродинамической компоновке можно выполнять полеты для демонстрации новых технологий авиационных силовых установок различных схем с различными типами и конструкциями двигателей, с учетом интерференции силовой установки и крыла.

На фиг. 2 показан вариант, обеспечивающий использование однодвигательной силовой установки беспилотного летательного аппарата с фюзеляжным расположением двигателя. При этом, для обеспечения балансировки беспилотного летательного аппарата съемное переднее горизонтальное оперение необходимо демонтировать. В такой аэродинамической компоновке можно выполнять полеты для демонстрации новых технологий авиационных силовых установок на базе малоразмерных газотурбинных двигателей прямой реакции с учетом интерференции силовой установки, фюзеляжа и V-образного хвостового оперения.

На фиг. 3 показан вариант, обеспечивающий использование трехдвигательной силовой установки беспилотного летательного аппарата с фюзеляжным расположением одного двигателя и крыльевым расположением двух одинаковых двигателей. При этом, для обеспечения балансировки беспилотного летательного аппарата, съемное переднее горизонтальное оперение необходимо демонтировать. В такой аэродинамической компоновке можно выполнять полеты для проведения исследований характеристик малоразмерных газотурбинных двигателей с фюзеляжным расположением по разным программам с учетом интерференции силовой установки, фюзеляжа и V-образного хвостового оперения. Дополнительно данный вариант обеспечит проведение исследования характеристик и демонстрации новых технологий гибридных авиационных силовых установок различных схем с учетом интерференции воздушного винта, крыла и фюзеляжа. Для этого, в хвостовой части фюзеляжа размещается двигатель с целью выработки механического крутящего момента для энергоустановки, питающей электроэнергией маршевые электрические двигатели с воздушными винтами, расположенные в пилонах под крылом беспилотного летательного аппарата.

Размещение двигателей силовой установки на фюзеляже и на крыле обеспечивается установкой универсальных съемных креплений 7 (фиг. 4), передающих нагрузки от тяги двигателя на силовые элементы планера.

Для использования источников энергии разного типа на борту беспилотного летательного аппарата в конструкции фюзеляжа предусмотрен специальный отсек (фиг. 5) для размещения съемного топливного бака с жидкими типами топлива, аккумуляторов и других элементов гибридной силовой установки.

Летающая лаборатория, содержащая беспилотный летательный аппарат самолетного типа, состоящий из несущего фюзеляжа, прямоугольного крыла, переднего горизонтального оперения, V-образного хвостового оперения и силовой установки с N авиационными двигателями, отличающаяся тем, что узлы крепления авиационных двигателей установлены на крыле и фюзеляже, переднее горизонтальное оперение выполнено съемным и в фюзеляже оборудован отсек с люком для размещения источника энергии.



 

Похожие патенты:

Изобретение относится к устройству (46) для измерения характеристик воздушного потока в кольцевом канале турбомашины, содержащему стержень (44), который проходит вдоль первой заданной оси (54) и на котором удерживается средство для измерения характеристик воздушного потока, причем указанный стержень с возможностью герметичного скольжения установлен в первой трубчатой части (62), от которой проходит вторая трубчатая часть (64), герметично проходящая вдоль первой оси (54) через ползун (66), установленный в направляющей с возможностью скольжения вдоль второй оси (56), перпендикулярной первой оси (54), причем стержень (44) соединен со второй трубчатой частью (64) с образованием кольцевого зазора.

Изобретение относится к газотурбинным двигателям, в частности к способам снижения уровня вибрации, возникающей на резонансных частотах вращения ротора или роторов двухвального ГТД летательного аппарата, и может быть использовано в судовой технике и наземных газотурбинных установках. Сущность изобретения заключается в незначительном изменении частоты вращения ротора для ухода с резонансного режима путем временной корректировки положения лопаток регулируемого направляющего аппарата.

Изобретение относится к области мониторинга, прогнозирования и оптимизации параметров функционирования энергоблоков электростанций. Способ комплексной оптимизации параметров энергоблока, включающего следующие агрегаты: паротурбинную и газотурбинную установки, котел-утилизатор и теплофикационную установку, основан на одновременном использовании эталонной модели и оперативном и непрерывном контроле эксплуатационных параметров и контроле за рабочим состоянием агрегатов в реальном времени, включая получение данных, характеризующих показатели технологических параметров работы объекта контроля через систему датчиков, интегрированных в штатную АСУ ТП энергоблока в режиме реального времени, а также значений параметров внешней среды, при этом: осуществляют автоматизированный анализ качества измерений, выявление недостоверных каналов передачи информации, отказы датчиков, корректировку данных статистическими методами, определяют режим работы оборудования, исходя из комбинаций значений технологических параметров и их динамики; проводят расчет номинальных теплофизических параметров энергоблока «в моменте» на основе исходно-номинальных показателей агрегатов; определяют теплофизические свойства рабочего тела в моменте и проводят расчет итоговых фактических технико-экономических показателей (ТЭП) энергоблока; оценивают наличие отклонений фактических показателей от нормативных, определенных исходно-номинальными характеристиками оборудования, рассчитывают потери за период нарастающим итогом, контролируют энергетическую эффективность; проводят расчет в динамике фактических ТЭП отдельных агрегатов энергоблока для первичной локализации топливной неэффективности; проводят анализ наличия отклонений фактических показателей от нормативных и выявляют ТЭП агрегатов, демонстрирующих значимые отклонения от требуемых номинальных значений; осуществляют мониторинг фактических значений технологических параметров и формируют эталонную модель функционирования энергоблока на базе выборки из массива ретроспективных значений параметров с автоматической корректировкой при изменении первичных данных, свидетельствующих о выходе из строя датчиков.

Изобретение относится к области испытательной техники, а именно к стендам имитации масляного контура системы смазки газотурбинного двигателя (ГТД), испытания агрегатов систем смазки и их составляющих, и может быть использовано для проведения испытаний устройств оперативного бортового контроля технического состояния работающего ГТД на наличие металлических частиц износа трущихся поверхностей в потоке масла и масловоздушной смеси системы смазки двигателя, проведения сравнительных испытаний устройств оперативного бортового контроля и систем с варьированием величины прокачки и температуры рабочей среды.

Стенд относится к средствам обеспечения исследований акустического шума электрогидравлических агрегатов, встраиваемых в резервуары гидравлических жидкостей транспортных средств. Стенд содержит регистрирующую и анализирующую аппаратуру, источник питания, измерительные микрофоны, подвес, а также выполненный в виде параллелепипеда каркас, включающий в себя стойки и ригели.

Изобретение относится к области измерительной техники, а именно к способам определения количества выходящих из строя объектов с использованием данных о наработках эксплуатируемых технических объектов. Предлагается способ определения количества выходящих из строя объектов с использованием данных о наработках эксплуатируемых технических объектов при фиксировании времени первого события отказа и вычислением их остаточных ресурсов.

Изобретение может быть использовано в устройствах для стендовых испытаний двигателей внутреннего сгорания. Автоматизированный комплекс мониторинга качества топлива двигателя внутреннего сгорания транспортных средств содержит испытуемый двигатель (1), датчик (2) частоты вращения коленчатого вала, датчик (3) распределительного вала, датчик (4) давления газа в цилиндре двигателя, датчик (5) положения дроссельной заслонки, датчик (6) детонации, датчик (7) угловых отметок коленчатого вала, датчик (8) концентрации кислорода и датчик (9) массового расхода воздуха.

Изобретение относится к области эксплуатации машин и может быть использовано в бортовой системе диагностирования двигателей внутреннего сгорания (ДВС) при безразборном контроле предотказного состояния шатунных подшипников. Способ безразборного контроля предотказного состояния шатунных подшипников ДВС заключается в определении давления масла в каналах по оси коленчатого вала, где находится сумма измеренного давления масла в непосредственной близости к поверхности коренной шейки и взятых со знаком «минус» математически вычисленных в программном блоке бортовой системы диагностирования потерь давления масла в каналах коленчатого вала от действия центробежных сил при переходе от поверхности коренной шейки до оси коленчатого вала.

Изобретение относится к области функционального диагностирования сложных технических систем, в частности жидкостных ракетных двигателей (ЖРД). Способ основан на использовании текущих измеренных в процессе огневого испытания значений параметров функционирования ЖРД, математической модели нормально функционирующего двигателя и характеристиках, полученных при автономных испытаниях, с помощью которых формируются диагностические признаки, определяющие нормальное или ненормальное функционирование с указанием момента времени возникновения и локализации неисправности.

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для тестирования и испытания различного серийного, а также вновь создаваемого внутрискважинного оборудования. Стенд для испытания внутрискважинного оборудования с имитацией реальных условий включает обсадную и лифтовую колонны, средство для обогрева обсадной колонны и насосную установку.

Изобретение относится к области прочностных испытаний натурных конструкций для определения ресурса беспилотных воздушных судов вертикального взлета и посадки, тренажеров и их элементов. На объекте испытаний монтируют тензодатчики и виброизмерительные преобразователи на элементах конструкции объекта, что и в летных испытаниях, при помощи адаптера закрепляют объект испытаний к подвижному фланцу промышленного робота, моделируя условия свободного полета.
Наверх