Инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в трансформаторном масле

Изобретение относится к измерительной технике на основе волоконно-оптических каналов и предназначено для осуществления непрерывного контроля содержания влаги и растворенных газов в изоляционном масле. Заявленная инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в трансформаторном масле включает источник инфракрасного излучения широкого диапазона, волоконно-оптический канал доставки оптического сигнала, оптические фильтры и приемники излучения. Причем волоконно-оптический канал выполнен в виде двух волоконных сборок: передающей и приемной, каждая из которых содержит равное количество оптических волокон двух типов диаметром 100 мкм и длиной 80 см в количестве не более 1750 в каждой сборке. При этом волокна первого типа прозрачны в диапазоне от 0,7 до 2,5 мкм и изготовлены из кварцевого стекла, а волокна второго типа прозрачны в диапазоне от 2,5 до 6,0 мкм и изготовлены из кристаллов галогенидов серебра или халькогенидных стекол, на одном торце которой установлен конус нарушенного полного внутреннего отражения (НПВО-конус), прозрачный в диапазоне от 1,0 до 6,0 мкм и находящийся в непосредственном контакте с измеряемой средой, а основанием соединенный с торцами передающей и приемной волоконно-оптических сборок, другие торцы которых соединены с источником инфракрасного излучения и узкополосными оптическими фильтрами, сопряженными с фотоприемниками инфракрасного излучения, для чего конец приемной сборки разделён на семь частей с равным количеством оптических волокон в каждой, при этом прозрачность типа волокна соответствует прозрачности оптического фильтра. Технический результат – реализация способа инфракрасной спектроскопии с помощью волоконно-оптических каналов доставки излучения, что позволяет проводить непрерывный контроль концентрации веществ с точностью до 0,1 об.% без отбора пробы в условиях сильных электромагнитных помех. 1 ил.

 

Изобретение относится к измерительной технике на основе волоконно-оптических каналов и предназначено для применения в статичных электромагнитных устройствах, таких как силовые трансформаторы тока, для осуществления непрерывного контроля содержания влаги и растворенных газов в изоляционном масле.

Известна диагностика качества изоляционного масла с помощью лабораторного аналитического оборудования и устройств регулярного и/или непрерывного измерения, встраиваемых непосредственно в силовые трансформаторы тока. Среди способов, осуществляющих регулярный и непрерывный контроль качества трансформаторного масла, различаются электрические и оптические. Недостатками способа, основанного на измерении электрических характеристик: изменении проводимости при взаимодействии с газами и емкости пробы масла, являются низкая устойчивость к электромагнитным помехам и косвенное измерение в малом объеме масла (в пробе). Оптические способы основаны на регистрации пиков поглощения детектируемых элементов, а именно трансформаторного масла, воды и газов, в независимости от агрегатного состояния и обеспечивают преимущество по точности и скорости анализа.

Инфракрасная (ИК) спектроскопия представляет собой оптический способ контроля состояния трансформаторного масла, который является неразрушающим, быстрым, обеспечивающим требуемую точность измерений. Одновременное детектирование газов, таких как CO, CO2 и растворенной и эмульсионной влаги с помощью инфракрасной спектроскопии возможно благодаря выделению характеристических пиков поглощения химических связей контролируемых веществ на определенных длинах волн. Дополнение датчиков, работающих по принципу ИК спектроскопии, волоконно-оптическими каналами доставки аналитического сигнала позволяет повысить помехозащищенность датчика за счет наличия диэлектрических волокон, устойчивых к электромагнитному воздействию от источников с напряжением до 800 кВ и током до 200 кА, и удаления электрических компонентов из области сильных электромагнитных помех, что позволяет расширить области применения оптического способа и реализовать погружные волоконно-оптические датчики контроля газов и влаги в трансформаторном масле.

Таким образом, мониторинг содержания газов и влаги, отражающих ключевые параметры нормальной работы трансформатора, в трансформаторном масле требует наличия комплексных систем, способных осуществлять одновременный контроль большого количества веществ в условиях сильных электромагнитных помех. Для обеспечения непрерывного одновременного измерения нескольких параметров требуется использовать способ инфракрасной спектроскопии.

Известно устройство измерения влаги в изоляционном масле с использованием инфракрасной спектроскопии (патент РФ №72071, заявка 2007144137/22 от 27.11.2007, МПК G01N 21/81), которое включает два источника инфракрасного излучения, работающих на аналитической и опорной длинах волн, соответствующих полосам поглощения и пропускания воды, кювету для анализа пробы изоляционного масла, фотоприемник инфракрасного излучения, отраженного от кюветы с анализируемой пробой, усилитель фототока фотоприемника, аналого-цифровые преобразователи и систему обработки данных. Сущность полезной модели состоит в применении двух узкополосных источников инфракрасного излучения - светодиодов LED19-PR-1 и LED16-PR-1, работающих на длине волны 1930 нм (аналитической) и 1650 нм (опорной) соответственно, излучение которых отражается от кюветы с анализируемой пробой изоляционного масла и попадает на инфракрасный фотодиод PD24-05 с узкой диаграммой направленности, чувствительный к излучению в диапазоне 1150-2320 нм, выходящий с фотоприемников сигнал обрабатывается цифровыми методами, результат измерения выводится на жидкокристаллический индикатор. Недостатком данного устройства является необходимость в отборе пробы изоляционного масла в кювету, а также использование одной длины волны поглощения воды 1930 нм, используемой в качестве аналитической, что приводит к длительному измерению концентрации влаги и низкой точности.

Известен газоанализатор (патент РФ № 160833 U1, заявка 2015132156/28 от 30.07.2015, МПК G01N 21/35 (2014.01) G01N 21/61 (2006.01)), основанный на оптическом способе инфракрасной спектроскопии, предназначен для анализа газов CH- и CO-групп за счет диффузионного или принудительного введения пробы газа в полость анализатора, в которой через пробу пропускается модулированное инфракрасное излучение. Путем автоматического подбора полосового фильтра для конкретного газа устанавливается пара оптических сигналов: на опорной и измерительной длине волны, по которым рассчитывается высота характеристического пика поглощения газа. Инфракрасный газоанализатор обладает высокой надежностью и сроком службы 2200 тыс. часов, однако требует отбора пробы, что приводит к наличию нагнетательных устройств, а также обеспечивает точность измерений до 1 об.%, что разрешает обнаружение только превышенных показателей по содержанию газа.

Известно устройство измерения влаги и растворенных газов SmartDGA производства LumaSense Technologies (LumaSense Technologies. SmartDGA Brochure-RU - Rev. 02/07/2021 (http://smartdga.ru)), основанное на оптическом способе анализа. Устройство относится к недисперсионным инфракрасным датчикам и содержит корпус, внутри которого расположена аналитическая ячейка, содержащая пробу масла, источник инфракрасного излучения, работающий в широком диапазоне спектра до 8 мкм, заключенный в оболочку, поглощающую электромагнитные и механические волны, устройство для направления излучения в коллимированный луч, проходящий через ячейку к инфракрасным детекторам. Принцип действия изобретения заключается в пропускании коллимированного луча инфракрасного излучения через аналитическую ячейку, заполненную пробой паров масла, к приемникам излучения для регистрации пиков поглощения присутствующих в масле газов и влаги. Погрешность измерений данного устройства составляет ± 2 об. % для влаги и ± 5 об. % для газов, отбор пробы осуществляется один раз в 24 часа, защищенность корпуса до 4 кВА. Недостатки датчика заключаются в высокой погрешности измерения, низкой помехозащищенность, ограничивающая применение датчика трансформаторами малой мощности, необходимость в отборе пробы, а также низкая частота ее отбора.

Прототипом предлагаемого датчика является анализатор непрерывного контроля газов и влаги в трансформаторном масле (Патент Европейского союза ((Europian Patent Register) EP 1950560 A1 от 23.01.2007 МПК G01N 33/2841 G01N2001/2267), объединяющий электрические и оптические способы анализа пробы масла. Устройство содержит кюветное отделение с набором сенсоров (датчиков), предназначенных для определения содержания водорода, газов CH- и CO-групп, влаги. В зависимости от типа газа и датчика применяются электрические и оптические способы: для газов CH-, CO-групп используется ИК спектроскопия, для водорода - металл-оксидный датчик, для определения количества влаги - тонкопленочный емкостный датчик. Точность измерения: для воды 0,20-0,50 об. %, для прочих веществ 0,12-0,60 об. %. Ключевые недостатки датчика заключаются в необходимости отбора пробы и в длительном времени анализа 20-40 минут.

Существуют проблемы анализа количества влаги и газов в трансформаторном масле, связанные с необходимостью отбора пробы масла, высокой длительностью анализа, низкой частотой измерения и высокими требованиями к помехозащищенности систем непрерывного контроля. Отбор пробы масла требует наличия дополнительного оборудования для автоматического отбора, что снижает надежность средства измерения и увеличивает длительность анализа. Наравне с последним низкая частота измерения влагосодержания способствует увеличению риска аварийности трансформатора. Высокие требования к помехозащищенности устройств контроля ограничивают применение существующих измерительных систем и повышают стоимость оборудования за счет наличия дополнительных элементов защиты.

Указанные проблемы решаются за счет того, что в инфракрасной волоконно-оптической системе мониторинга растворенных газов и влаги в трансформаторном масле, включающей источник инфракрасного излучения широкого диапазона, волоконно-оптический канал доставки оптического сигнала, оптические фильтры и приемники излучения, отличающейся тем, что волоконно-оптический канал выполнен из двух волоконно-оптических сборок передающей и приемной, каждая из которых содержит равное количество оптических волокон двух типов диаметром 100 мкм и длиной 80 см в количестве не более 1750 в каждой сборке, при этом волокна первого типа прозрачны в диапазоне от 0,7 до 2,5 мкм и изготовлены из кварцевого стекла, а волокна второго типа прозрачны в диапазоне от 2,5 мкм до 6,0 мкм и изготовлены из кристаллов галогенидов серебра или халькогенидных стекол, на одном торце которой установлен конус нарушенного полного внутреннего отражения (НПВО-конус), прозрачный в диапазоне от 1,0 до 6,0 мкм и находящийся в непосредственном контакте с измеряемой средой, а основанием соединенный с торцами передающей и приемной волоконно-оптических сборок, другие торцы которых соединены с источником инфракрасного излучения и узкополосными оптическими фильтрами, сопряженными с фотоприемниками инфракрасного излучения, для чего конец приемной сборки разделён на семь частей с равным количеством оптических волокон в каждой, при этом прозрачность типа волокна соответствует прозрачности оптического фильтра.

На фигуре показана инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в трансформаторном масле, где 1 - источник инфракрасного излучения, 2 - передающая волоконно-оптическая сборка, 3 - конус нарушенного полного внутреннего отражения, 4 - приемная волоконно-оптическая сборка, 5 - узкополосные оптические фильтры, 6 - фотодиодные приемники излучения, 7 - блок усилителей сигнала, 8 - аналого-цифровой преобразователь и микропроцессор.

ИК излучение, источником которого является источник инфракрасного излучения (1), работающий в диапазоне 0,8-6,0 мкм и оптически связанный с передающей волоконно-оптической сборкой (2), проходит по оптическим волокнам двух типов диаметром 100 мкм и длиной 80 см в количестве не более 1750, при этом волокна первого типа прозрачны в диапазоне от 0,7 до 2,5 мкм и изготовлены из кварцевого стекла, а волокна второго типа прозрачны в диапазоне от 2,5 мкм до 6,0 мкм и изготовлены из кристаллов галогенидов серебра или халькогенидных стекол к конусу нарушенного полного внутреннего отражения (НПВО-конус) (3). ИК излучение многократно отражается от боковой поверхности конуса, частично вытекая в среду и взаимодействуя с ней так, что передаваемое широкополосное излучение поглощается молекулами измеряемых веществ. Из НПВО-конуса частично-поглощенное излучение поступает в принимающую волоконно-оптическую сборку (4), включающую оптические волокна, аналогично, двух типов диаметром 100 мкм и длиной 80 см в количестве не более 1750, при этом волокна первого типа прозрачны в диапазоне от 0,7 до 2,5 мкм и изготовлены из кварцевого стекла, а волокна второго типа прозрачны в диапазоне от 2,5 мкм до 6,0 мкм и изготовлены из кристаллов галогенидов серебра или халькогенидных стекол. ИК излучение передается по принимающей волоконно-оптической сборке, конец которой разделяется на 7 частей для подвода излучения к узкополосным оптическим фильтрам (5), выделяющим длину волны, характерную для полосы поглощения каждого контролируемого вещества и опорную - 1,45, 1,60, 1,73, 1,95, 2,94, 4,30, 4,70 мкм, с шириной полупика Δλ (0,5-25 nm) к блоку приемников излучения, состоящему из 7 фотодиодов (6) для ближнего и среднего ИК излучения, соответственно. Электрический сигнал с фотоприемников через усилители сигнала (7) и аналоговые входы электронного блока, поступает в аналого-цифровой преобразователь, после чего данные обрабатываются процессором (8).

Технический результат изобретения достигается благодаря реализации способа инфракрасной спектроскопии с помощью диэлектрических волоконно-оптических каналов доставки излучения, что позволяет проводить непрерывный одновременный контроль концентрации CO и CO2 газов и влаги с точностью до 0,1 об. % без отбора пробы в условиях сильных электромагнитных помех. Непрерывная работа системы мониторинга растворенных газов и влаги в трансформаторном масле осуществляется за счет непрерывной работы источника излучения и высокой частоты обработки полученных приемниками излучения спектральных данных процессора. Одновременное измерение концентрации газов CO-групп и влаги достигается за счет наличия их полос поглощения в ближнем и среднем ИК диапазонах, которые охватываются широкополосным излучением источника, выделяются узкополосными оптическими фильтрами и детектируются приемниками. Высокая точность до 0,1 об. % достигается за счет малого уровня шума приемников излучения, набора данных с каналов и их статистической обработки процессором. Наличие волоконных каналов доставки, изготовленных из диэлектрических материалов - кварца, халькогенидных стекол или галогенидов серебра, обеспечивает устойчивость передаваемого по каналам излучения к воздействию электромагнитного излучения, таким образом отсутствуют искажения сигнала и гарантируется помехозащищенность системы. Отсутствие пробоотбора связано с наличием чувствительного элемента - НПВО-конуса, который контактирует со средой и передает излучение из первичной сборки во вторичную с пиками поглощения исследуемых веществ.

Инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в трансформаторном масле, включающая источник инфракрасного излучения широкого диапазона, волоконно-оптический канал доставки оптического сигнала, оптические фильтры и приемники излучения, отличающаяся тем, что волоконно-оптический канал выполнен в виде двух волоконных сборок: передающей и приемной, каждая из которых содержит равное количество оптических волокон двух типов диаметром 100 мкм и длиной 80 см в количестве не более 1750 в каждой сборке, при этом волокна первого типа прозрачны в диапазоне от 0,7 до 2,5 мкм и изготовлены из кварцевого стекла, а волокна второго типа прозрачны в диапазоне от 2,5 до 6,0 мкм и изготовлены из кристаллов галогенидов серебра или халькогенидных стекол, на одном торце которой установлен конус нарушенного полного внутреннего отражения (НПВО-конус), прозрачный в диапазоне от 1,0 до 6,0 мкм и находящийся в непосредственном контакте с измеряемой средой, а основанием соединенный с торцами передающей и приемной волоконно-оптических сборок, другие торцы которых соединены с источником инфракрасного излучения и узкополосными оптическими фильтрами, сопряженными с фотоприемниками инфракрасного излучения, для чего конец приемной сборки разделён на семь частей с равным количеством оптических волокон в каждой, при этом прозрачность типа волокна соответствует прозрачности оптического фильтра, после чего электрический сигнал с фотоприемников через усилители сигнала и аналоговые входы электронного блока поступает в аналого-цифровой преобразователь и далее обрабатывается процессором.



 

Похожие патенты:

Настоящее изобретение относится к измерительным приборам, в частности к приборам измерения параметров газа для анализа компонентов воздуха. Многоканальный газоанализатор включает корпус, в котором выполнены по крайней мере два газоприемных отверстия.

Изобретение относится к системе и способу определения чистоты драгоценного камня, в частности определения чистоты алмаза. Способ, осуществляемый с использованием компьютеризированной системы для оценки чистоты алмаза, при этом компьютеризированная система включает в себя устройство получения оптического изображения, процессор, предварительно обученную нейронную сеть и модуль вывода, функционально соединенные вместе, причем упомянутый способ включает этапы, на которых: (i) получают с помощью устройства получения оптического изображения одно или более множеств изображений осевой проекции алмаза с различной глубиной фокуса, в котором глубина фокуса определяется высотой алмаза, а множество изображений осевой проекции получают в среде, имеющей заданный постоянный уровень освещенности, и осевая проекция определяется как вид на алмаз в направлении центральной оси, перпендикулярной к площадке алмаза и проходящей через вершину павильона алмаза, а высота алмаза определяется как длина центральной оси алмаза, (ii) в процессоре объединяют множество осевых проекций для образования одного или нескольких одиночных оптических изображений, при этом одиночное изображение содержит дефекты в фокусе из множества осевых проекций, так что дефекты не в фокусе из множества осевых проекций внутри алмаза отбрасываются, (iii) устанавливают в предварительно обученной нейронной сети регрессивное значение, связанное со степенью чистоты упомянутого алмаза, на основе одного или более одиночных изображений, полученных на этапе (i), при этом предварительно обученную нейронную сеть предварительно обучают с использованием одного или более одиночных оптических изображений, полученных из множества алмазов, каждому из которых присвоена заранее назначенная степень чистоты, и при этом одно или более одиночных оптических изображений, полученных из группы алмазов, получают с помощью того же процесса, что и на этапе (i), и получают в среде с заданным постоянным уровнем освещенности, таким же, как и в (i), и (iv) в модуле вывода устанавливают степень чистоты алмазу (i) путем корреляции регрессивного значения из (ii) со степенью чистоты.

Изобретение относится к способам картирования процесса перегонки. Описан способ картирования атмосферно-вакуумной перегонки, содержащий этапы, на которых измеряют показатели преломления с помощью рефрактометра, значения плотности с помощью денсиметра, значения температур отбора нефтяных фракций с помощью датчика температуры на разных уровнях колонны атмосферной либо вакуумной перегонки или измеряют показатели преломления с помощью поточного рефрактометра, значения плотности с помощью поточного денсиметра, значения температуры с помощью датчика температуры в потоке нефтяных фракций; рассчитывают значения удельной рефракции, интерцепта рефракции и обратной плотности для каждой фракции с помощью средства обработки данных, предварительно определяют значения удельной рефракции, интерцепта рефракции и обратной плотности для температурных парафиновых, нафтеновых и ароматических реперов для всех температурных интервалов анализируемых фракций с помощью средства обработки данных, выполняют построение идентификационной карты атмосферно-вакуумной перегонки нефти в координатах интерцепт рефракции - удельная рефракция с нанесением на неё точек для всех фракций.

Изобретение относится к области контроля качества нефтепродуктов, в частности к определению содержания воды в светлых нефтепродуктах. Способ определения содержания воды в нефтепродукте характеризуется тем, что испытуемый образец встряхивают в течение одной минуты до полной однородности распределения воды во всем ее объеме, затем фильтруют через обезвоженный хлористый кальций и фильтровальную бумагу в количестве, достаточном для заполнения кюветы, после повторного встряхивания наливают в кювету пробу без фильтрации, отфильтрованной и обезвоженной пробой заполняют кювету-эталон, далее устанавливают монохроматор спектрофотометра на 1000 нм, размещают эталонную и анализируемую кюветы в соответствующие пазы, обнуляют фоновый сигнал для эталонной кюветы и измеряют оптическую плотность анализируемой, после этого находят процент содержания воды в калибровочном графике зависимости содержания воды от оптической плотности.

Использование: для автоматизированного определения периодичности рельефа изломов разрушенных материалов. Сущность изобретения заключается в том, что посредством растрового электронного микроскопа исследуют излом разрушенного образца и получают изображение его участка с усталостными бороздками, образованными в структуре исследуемого разрушенного образца, после чего анализируют изображение на электронно-вычислительной машине с помощью одномерного преобразования Фурье.

Группа изобретений относится к области лабораторной диагностики. Предложены способ идентификации микроорганизмов и устройство для его выполнения.

Изобретение относится к химико-фармацевтической промышленности, а именно к способу количественного определения сирингина в коре сирени обыкновенной. Способ количественного определения сирингина в коре сирени обыкновенной, заключающийся в получении извлечения из растительного сырья путем экстракции сирингина из коры сирени обыкновенной 70% этиловым спиртом при соотношении сырье:экстрагент 1:30 и его последующего анализа методом высокоэффективной жидкостной хроматографии при длине волны 266 нм, в котором экстрагируют сирингин в течение 60 мин, хроматографическое разделение осуществляют в изократическом режиме и в качестве подвижной фазы используют смесь ацетонитрила с 1% раствором уксусной кислоты в воде в соотношении 15:85; содержание сирингина в коре сирени обыкновенной в пересчете на абсолютно сухое сырье в процентах (X) вычисляют по формуле: где Н - среднее значение высоты пика сирингина, вычисленное из хроматограмм раствора испытуемого образца; Но - среднее значение высоты пика сирингина, вычисленное из хроматограмм раствора стандартного образца сирингина; V - объем извлечения, мл; Р - разведение; Vo - объем раствора стандартного образца сирингина, мл; V1 - объем вводимой пробы раствора испытуемого образца, мкл; V2 - объем вводимой пробы раствора стандартного образца сирингина, мкл; mo - масса стандартного образца, г; m - масса сырья, г; W - потеря в массе при высушивании сырья в процентах; 0,95 - коэффициент пересчета сирингина на безводное вещество.

Изобретение относится к химико-фармацевтической промышленности, а именно к способу количественного определения суммы флавоноидов в почках дуба черешчатого. Предлагается способ количественного определения суммы флавоноидов в почках дуба черешчатого, включающий однократную экстракцию этиловым спиртом воздушно-сухого сырья точной навеской массой 1 г, в соотношении сырье:экстрагент 1:50, с последующей пробоподготовкой и определением оптической плотности методом дифференциальной спектрофотометрии, с использованием стандартного образца цинарозид, а при его отсутствии с использованием значения теоретического удельного показателя поглощения, в котором получают водно-спиртовое извлечение из почек дуба черешчатого путем однократной экстракции в течение 120 мин 70% этиловым спиртом воздушно-сухого сырья, измельченного до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм; количественное определение суммы флавоноидов проводят при длине волны 400 нм в пересчете на цинарозид и содержание суммы флавоноидов в пересчете на цинарозид рассчитывают по формуле: где х - содержание суммы флавоноидов в пересчете на цинарозид, %; D - оптическая плотность испытуемого раствора; Do - оптическая плотность раствора стандартного образца (СО) цинарозида; m - масса сырья, г; mo - масса СО цинарозида, г; W - потеря в массе при высушивании, %, в случае отсутствия стандартного образца цинарозида используют теоретическое значение удельного показателя поглощения - 334: где х - содержание суммы флавоноидов в пересчете на цинарозид, %; D - оптическая плотность испытуемого раствора; m - масса сырья, г; 334 - удельный показатель поглощения (Е) СО цинарозида при 400 нм; W - потеря в массе при высушивании, %.

Изобретение относится к аналитическим сенсорным системам и может быть использовано для детектирования активных форм кислорода в биологических и иных пробах, а также при проведении хемилюминесцентного иммунологического анализа с повышенной чувствительностью. Устройство для хемилюминесцентного анализа содержания активных форм кислорода в биологических и иных пробах содержит насос для ввода с помощью трубок жидких реактивов из емкостей с хемилюминофором и исследуемыми пробами в микрофлюидный чип, выход которого связан трубкой с емкостью для слива, и фотоприемник, при этом микрофлюидный чип и фотоприемник помещены в светонепроницаемый корпус, причем микрофлюидный чип выполнен по меньшей мере двухканальным и содержит диэлектрическую подложку с нанесенной на нее метаповерхностью из обработанных лазерным излучением металлических наночастиц, обладающих локализованным плазмонным резонансом в спектральной полосе хемилюминесценции используемого хемилюминофора, а в светонепроницаемый корпус также включены два линейных взаимно-ортогонально ориентированных поляризатора, наложенных на различные каналы микрофлюидного чипа, расположенные друг за другом по ходу распространения излучения вращатель поляризации и установленный непосредственно перед входом фотоприемника третий линейный поляризатор излучения, совпадающий по ориентации с одним из линейных поляризаторов, наложенных на микрофлюидный чип.

Изобретение относится к области физических исследований вещества методами оптической спектроскопии и касается способа детекции энантиомеров хиральных органических молекул. Способ включает в себя модификацию ахиральных нанопроволок молекулами исследуемого аналита и молекулами стандарта с известной хиральностью, иммобилизацию полученных модифицированных нанопроволок на нижней отражающей поверхности, нанесение на иммобилизованные модифицированные нанопроволоки верхней отражающей поверхности на расстоянии, обеспечивающем увеличение амплитуды спектров гигантского комбинационного рассеяния, и снятие спектров гигантского комбинационного рассеяния молекул исследуемого аналита.
Наверх