Оптический умножитель

Изобретение относится к вычислительной технике, к оптическим устройствам обработки информации. Заявленное устройство направлено на решение задачи умножения когерентных и некогерентных, оптических кодовых сигналов с быстродействием, потенциально возможным для оптических процессорных схем, и задачи упрощения устройства. Оптический умножитель содержит N М-выходных оптических разветвителей, М N-выходных оптических разветвителей, M*N оптических логических элементов «И», М*N-входной оптический объединитель, источник напряжения. Входами первого сомножителя являются входы N М-выходных оптических разветвителей, входами второго сомножителя являются входы М N-выходных оптических разветвителей. J-й выход i-го М-выходного оптического разветвителя (i=1, 2, …, N, j=1, 2, …, M) оптически связан со входом фотодиода ij-го оптического логического элемента «И», с которым также оптически связан i-й выход j-го N-выходного оптического разветвителя. Входы питания оптических логических элементов «И» соединены с выходом источника напряжения, а выходы оптических логических элементов «И» подключены к соответствующим входам M*N-входного оптического объединителя, выход которого является выходом устройства. 2 ил.

 

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств.

Известны оптические умножители, позволяющие осуществлять перемножение оптических кодовых сигналов, например, остаточный умножитель на базе сумматора, выполненного на волноводных переключателях, содержащий оптические разветвители, волноводные переключатели и электронные схемы управления коммутацией [Акаев А.А., Майоров С.А. Оптические методы обработки информации. М.: Высшая школа, 1988, с. 203, рис. 7.19].

Недостатками данных умножителей являются низкое быстродействие, обусловленное использованием электронных схем управления переключением, и сложность конструкции.

Наиболее близким по техническому исполнению к предложенному устройству является оптический умножитель, содержащий группу оптических ответвлений [Патент №2022328, Россия, 1994. Оптический умножитель / Соколов С.В].

Недостатком данного устройства является сложность конструкции.

Заявленное устройство направлено на решение задачи умножения как когерентных, так и некогерентных, оптических кодовых сигналов с быстродействием, потенциально возможным для оптических процессорных схем, и задачи упрощения устройства.

Поставленная задача возникает при разработке и создании оптических вычислительных машин или приемо-передающих устройств, обеспечивающих обработку информации в гигагерцовом диапазоне.

Технический результат достигается тем, что в устройство введены N М-выходных оптических разветвителей, М N-выходных оптических разветвителей, М*N-входной оптический объединитель, источник напряжения, M*N оптических логических элементов «И», каждый из которых содержит резистор, фотодиод, вход которого объединяет информационные входы оптического логического элемента «И», и светодиод, катод фотодиода подключен к катоду светодиода, а анод фотодиода подключен к отрицательному электроду входа питания оптического логического элемента «И», соединенного с выходом источника напряжения, резистор соединен параллельно со светодиодом, анод которого подключен к положительному электроду входа питания оптического логического элемента «И», а выход светодиода является выходом оптического логического элемента «И», входами первого сомножителя являются входы М-выходных оптических разветвителей, входами второго сомножителя - входы N-выходных оптических разветвителей, j-й выход i-го М-выходного оптического разветвителя (i=1, 2, …, N, j=1, 2, …, M) оптически связан со входом фотодиода ij-го оптического логического элемента «И», с которым также оптически связан i-й выход j-го N-выходного оптического разветвителя, входы питания оптических логических элементов «И» соединены с выходом источника напряжения 4, а выходы оптических логических элементов «И» подключены к соответствующим входам M*N-входного оптического объединителя, выход которого является выходом устройства.

На фиг. 1 представлена функциональная схема оптического умножителя (далее - устройство).

Устройство содержит N М-выходных оптических разветвителей 11i, i=1, 2, …, N, М N-выходных оптических разветвителей 12j, j=1, 2, …, M, M*N оптических логических элементов «И» 22j, i=1, 2, …, N, j=1, 2, …, M, M*N-входной оптический объединитель 3, источник напряжения 4.

Входами первого сомножителя "a1","a2",…,"aN" являются входы N М-выходных оптических разветвителей 11i, i=1, 2, …, N. Входами второго сомножителя "b1","b2",…,"bM" являются входы М N-выходных оптических разветвителей l2j, j=1, 2, …, M.

J-й выход i-го М-выходного оптического разветвителя 11i оптически связан со входом фотодиода 2ij оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, M.

1-й выход j-го N-выходного оптического разветвителя l2i также оптически связан со входом фотодиода 2ij оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, M.

Входы питания оптических логических элементов «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, соединены с выходом источника напряжения 4.

Выходы оптических логических элементов «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, подключены к соответствующим входам M*N входного оптического объединителя 3. Выход М*N входного оптического объединителя 3 является выходом устройства.

Функциональная схема оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, показана на фиг. 2.

Оптический логический элемент «И» 2ij содержит фотодиод 2ij1 светодиод 2ij2 и резистор 2ij3.

Вход фотодиода 2ij1 представляет собой (объединяет) информационные входы оптического логического элемента «И» 2ij.

Катод фотодиода 2ij1 подключен к катоду светодиода 2ij2, а анод фотодиода 2ij1 подключен к отрицательному электроду входа питания оптического логического элемента «И» 2ij, соединенного с выходом источника напряжения 4 (т.к. фотодиод в режиме фотоприема работает в инверсном режиме).

Резистор 2ij3 соединен параллельно со светодиодом 2ij2, анод которого подключен к положительному электроду входа питания оптического логического элемента «И» 2ij. Выход светодиода 2ij2 является выходом оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, М. Устройство работает следующим образом.

На входы первого сомножителя "a1","a2",…,"aN" (входы М - выходных оптических разветвителей 1ij, i=1, 2, …, N) поступает оптический унитарный код (код с числом единиц, соответствующим значению кодируемого числа) с интенсивностью информационного единичного сигнала («1»), равной М усл(овных).ед(иниц)., соответствующий первому сомножителю А. На входы второго сомножителя "b1", "b2",…,"bM" (входы N - выходных оптических разветвителей l2j, j=1, 2, …, M) поступает оптический унитарный код с интенсивностью информационного единичного сигнала («1»), равной N усл. ед., соответствующий второму сомножителю В.

Разветвляясь в соответствующих оптических разветвителях, оптические сигналы с интенсивностью «1» усл. ед. (или «О») поступают: с выходов М - выходного оптического разветвителя 1 и на входы М оптических логических элементов «И» 2ij, j=1, 2, …, M, а с выходов N - выходного оптического разветвителя l2j на входы N оптических логических элементов «И» 2ij, i=1, 2, …, N.

Если на вход оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, поступит оптический сигнал с интенсивностью «1» усл. ед., которая меньше порога срабатывания фотодиода 2ij1, то фотодиод 2ij будет закрыт - падение напряжения источника питания 4 на светодиоде 2ij2 будет ниже его порога срабатывания. Оптический сигнал на выходе светодиода 2ij, а также на выходе оптического логического элемента «И» 2ij, будет равен нулю.

Если на вход оптического логического элемента «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, поступят два оптических сигнала с интенсивностью «1» усл. ед., суммарная интенсивность которых больше порога срабатывания фотодиода 2ij1, то фотодиод 2ij1 будет открыт и падение напряжения источника питания 4 на светодиоде 2ij1 будет выше его порога срабатывания. На выходе светодиода 2ij2, а, следовательно, на выходе оптического логического элемента «И» 2ij, в этом случае формируется оптический сигнал с интенсивностью «1» усл.ед., поступающий далее на соответствующий вход M*N - входного оптического объединителя 3.

Таким образом, наличие «1» в соответствующем разряде оптического унитарного кода одного из сомножителей обеспечивает прохождение всех разрядов оптического унитарного кода другого сомножителя на соответствующие входы M*N - входного оптического объединителя 3.

Т.к. оптические сигналы, поступающие на вход M*N - входного оптического объединителя 3, суммируются на его выходе, то на выход устройства поступает оптический сигнал с интенсивностью А*В усл. ед.

Время переходного процесса определяется быстродействием оптических логических элементов «И» 2ij, i=1, 2, …, N, j=1, 2, …, M, и составляет ≈ 10-10 с, что обеспечивает возможность обработки информации в гигагерцовом диапазоне.

Простота данного оптического умножителя и высокое быстродействие делают его весьма перспективным при разработке и создании оптических вычислительных машин и приемо-передающих устройств.

Оптический умножитель включает N М-выходных оптических разветвителей, М N-выходных оптических разветвителей, М*N-входной оптический объединитель, источник напряжения, M*N оптических логических элементов «И», каждый из которых содержит резистор, фотодиод, вход которого объединяет информационные входы оптического логического элемента «И», и светодиод, катод фотодиода подключен к катоду светодиода, а анод фотодиода подключен к отрицательному электроду входа питания оптического логического элемента «И», соединенного с выходом источника напряжения, резистор соединен параллельно со светодиодом, анод которого подключен к положительному электроду входа питания оптического логического элемента «И», а выход светодиода является выходом оптического логического элемента «И», входами первого сомножителя являются входы М-выходных оптических разветвителей, входами второго сомножителя - входы N-выходных оптических разветвителей, j-й выход i-го М-выходного оптического разветвителя (i=1, 2, …, N, j=1, 2, …, M) оптически связан со входом фотодиода ij-го оптического логического элемента «И», с которым также оптически связан i-й выход j-го N-выходного оптического разветвителя, входы питания оптических логических элементов «И» соединены с выходом источника напряжения 4, а выходы оптических логических элементов «И» подключены к соответствующим входам M*N-входного оптического объединителя, выход которого является выходом устройства.



 

Похожие патенты:

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации. Оптический компаратор кодов содержит первую группу N N-выходных оптических разветвителей, вторую группу N N-выходных оптических разветвителей, 2*N*N-входной оптический объединитель, источник напряжения, N*N оптических логических элементов исключающее «ИЛИ».

Изобретение относится к полностью оптическим логическим элементам, реализованным с использованием концепции неравновесной конденсации экситон-поляритонов в неосновное состояние. Полностью оптический логический элемент включает органический полупроводниковый образец, помещенный в микрорезонатор, обладающий добротностью в диапазоне от 500 до 600, когерентный источник непрерывной оптической накачки для формирования экситонного резервуара путем нерезонансного возбуждения образца, с энергией пучка накачки, чтобы обеспечить условие спонтанной конденсации экситонных поляритонов из экситонного резервуара, источник излучения одного или двух затравочных пучков импульсов для стимуляции процесса релаксации горячего экситона в неосновное состояние нижней поляритонной ветви.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при анализе двоичных чисел. Техническим результатом является обеспечение определения минимального двоичного числа из совокупности N двоичных чисел с высоким быстродействием.

Изобретение относится к цифровым устройствам и может быть использовано, в частности, при производстве универсальных цифровых фотонных вычислительных машин и цифровых фотонных устройств управления. Работа оптического логического элемента, содержащего оптический волновод с входами и выходом, основана на эффекте интерференции когерентных световых импульсов, поляризованных в одной плоскости.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной (нечеткой) логики в реальном масштабе времени.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при выполнении вычислений в системе остаточных классов. Техническим результатом является создание устройства, выполняющего в режиме реального времени вычисления в системе остаточных классов.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной (нечеткой) логики в реальном масштабе времени.

Изобретение относится к полностью оптическим логическим элементам (ОЛЭ) на основе микрокольцевых резонаторов и может быть использовано в качестве логического базиса в оптических вычислительных устройствах. Полностью оптический логический базис на основе микрокольцевого резонатора содержит логические элементы И, НЕ, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, каждый из которых состоит из микрокольцевого резонатора и первого волновода, соединенного с кольцевым резонатором с помощью первого направленного разветвителя, вход первого волновода является первым оптическим входом любого логического элемента, а выход является первым оптическим выходом любого логического элемента.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной логики в реальном масштабе времени.

Изобретение относится к вычислительной технике. Технический результат заключается в расширении арсенала средств того же назначения.
Наверх