Антиэрозийная рабочая лопатка для последних ступеней паровых конденсационных турбин

Изобретение относится к области энергетического машиностроения и призвано защищать рабочие лопатки последних ступеней конденсационных паровых турбин от влажной паровой эрозии входных кромок указанных рабочих лопаток. Предложена рабочая лопатка для последних ступеней конденсационных паровых турбин, ее выпуклая поверхность в верхней части на длине, подверженной эрозийному износу, выполнена с продольно-ориентированным оребрением по направлению движения пара с высотой ребер h≥5 мм при шаге t≤2 мм и с толщиной ребер δ≤0,5 мм. Технический результат - снижение энергии силового взаимодействия капель влаги с обтекаемыми поверхностями, защита лопатки от эрозийного износа, повышение вибрационной надежности лопатки. 2 ил.

 

Изобретение относится к области энергетического машиностроения и призвано защищать рабочие лопатки последних ступеней конденсационных паровых турбин от влажной паровой эрозии входных кромок указанных рабочих лопаток.

Суть проблемы состоит в том, что в конденсационных паровых турбинах их последние ступени работают в области влажно-парового потока, степень влажности которого достигает 8-10%. В этих условиях поверхности входных кромок рабочих лопаток при контакте с высокоскоростными каплями влажно-парового потока подвергаются интенсивному эрозийному износу.

Для его замедления опасные с точки зрения эрозийного износа поверхности защищаются либо с помощью крепления к ним стеллитовых пластин, устойчивых к влажно паровой эрозии, либо путем специальных эрозионноустойчивых покрытий (см., например, А.В. Щегляев, Паровые турбины. Энергоатомиздат. М. 1993; Б.М. Трояновский, Паровые турбины АЭС).

Однако все известные меры защиты, основанные на использовании более устойчивых к каплеударной эрозии поверхностей, не исключают эрозийного износа, а только продлевают срок эксплуатации лопаточного аппарата конденсационных паровых турбин.

В отличие от указанных аналогов, предлагается принципиально другой метод защиты поверхностей от ударно-капельной эрозии, состоящий не в увеличении стойкости поверхностей к указанному виду эрозии, а в снижении энергии силового взаимодействия капель влаги с обтекаемыми поверхностями.

Конструктивная суть предлагаемого изобретения иллюстрируется фигурой 1, где приняты следующие обозначения:

1) рабочая лопатка последней ступени конденсационной паровой турбины;

2) входная кромка лопатки;

3) стенки лопатки;

4) продольно-ориентированное ребро по направлению движения пара.

Как следует из приведенной фигуры 1, в верхней части рабочей среды лопатки 1 со стороны ее стенки 3 на длине l, подлежащей защите от эрозийного износа выполнены продольно-ориентированные ребра 4 по направлению движения пара, толщина которых δ≤0,5 мм при их высоте над поверхностью лопатки h≥5 мм и поперечном шаге t≤2 мм.

При этом длина продольно-ориентированных ребер по направлению движения пара не должна превышать 30% от общей длины выпуклой стороны лопатки.

Для пояснения функционального назначения приведенного конструкторского решения на фигуре 2 показан входной треугольник скорости для ступени, работающей во влажной паровой среде.

Особенности работы такой ступени состоит в том, что паровая и жидкая фаза двухфазного потока выходит из соплового аппарата разными абсолютными скоростями, причем локальные скорости жидкой фазы меняются в зависимости от размеров капель влаги в очень широком диапазоне при постоянном расчетном значении скорости паровой фазы.

При этом средняя абсолютная скорость жидкой фазы с всегда оказывается существенно меньше скорости с1n.

В результате угол входа на работающую лопатку жидкой фазы β оказывается больше угла входа β1n паровой фазы.

Поскольку рабочая решетка профилей при проектировании рассчитывается для паровой фазы, то капли жидкой фазы с достаточно большой скоростью контактируют с выпуклой поверхностью стенки 3 рабочей лопатки 1, что и ведет в конечном счете к ее эрозийному износу.

Предлагаемая система защиты рабочих лопаток последней ступени конденсационной турбины работает следующим образом.

Рассматриваемый пучок капель влаги в связи с различными размерами капель влаги с различной, но достаточно большой относительной скоростью w встречают на своем пути не поверхность лопатки, а узкие щели между продольно-ориентированными ребрами, где благодаря увеличенному сопротивлению теряют значительную часть своей кинетической энергии.

При снижении скорости в момент контакта с поверхностью лопатки в два раза кинетическая энергия канала снижается в четыре раза.

Кроме того, в узких щелях между ребрами при течении влажного пара находится не пар, а слой жидкой фазы, и первоначальный контакт капель жидкости происходит не с твердой поверхностью, а с поверхностью жидкой пленки, обеспечивающий дальнейшее снижение силового взаимодействия капель с твердой поверхностью рабочей лопатки.

Следует также отметить, что в плане вибрационной надежности наличие на спинке профиля лопатки у ее вершины, где сам профиль имеет небольшую поперечную толщину, решетки тонкостенных ребер резко увеличивают ее жесткость, что наряду с защитой лопатки от эрозийного износа ведет к повышению ее вибрационной надежности.

Таким образом, предлагается рабочая лопатка для последних ступеней конденсационных турбин, отличающаяся тем, что ее выпуклая поверхность в верхней части на длине, подверженной эрозийному износу, выполняя с продольно - ориентированным оребрением по направлению движения пара, высота ребер которого h≥5 мм, при толщине δ≤0,5 мм и шаге между ребрами t≤2 мм.

При этом оребренная часть спинки лопатки должна занимать не менее 20% общей длинны рабочей лопатки от ее верхней части.

Источники информации

А.В. Щегляев «Паровые турбины». Энергоатомиздат, М. 1993 г. Б.М. Трояновский «Паровые турбины» АЭС.

Рабочая лопатка для последних ступеней конденсационных паровых турбин, отличающаяся тем, что ее выпуклая поверхность в верхней части на длине, подверженной эрозийному износу, выполнена с продольно-ориентированным оребрением по направлению движения пара с высотой ребер h≥5 мм при шаге t≤2 мм и с толщиной ребер δ≤0,5 мм.



 

Похожие патенты:

Изобретение относится к области энергомашиностроения, в частности паротурбиностроения, и может быть использовано при проектировании последних ступеней паровых турбин с диафрагмой и рабочим колесом, преимущественно влажно-паровых турбин. Последняя ступень турбины содержит проточную часть с диафрагмой, имеющую обод с влагоулавливающим элементом и направляющие лопатки, расположенные с равномерным шагом в тангенциальном направлении, и рабочим колесом с рабочими лопатками.

Изобретение относится к области энергомашиностроения, в частности паротурбостроения, и может быть использовано при проектировании направляющих лопаток, входящих в состав ступеней цилиндров низкого давления осевых паровых турбин. Направляющая лопатка имеет аэродинамический профиль с корневым и периферийным торцами, криволинейные входную и выходную кромки, изогнутые в осевом и тангенциальном направлении по всей высоте аэродинамического профиля, имеющего по высоте корневой и периферийный участки, а также средний участок, расположенный между ними.

Изобретение относится к профилированной конструкции, удлиненной в направлении, в котором конструкция имеет длину, обдуваемую воздушным потоком, и поперечно к которому конструкция содержит переднюю кромку (164) и/или заднюю кромку, по меньшей мере одна из которых выполнена профилированной и имеет в указанном направлении удлинения зубчатости (28а), образованные следующими друг за другом зубцами (30) и впадинами (32).

Турбинная лопатка (100), имеющая конструкцию для газопленочного охлаждения с составным пазом неправильной формы. Турбинная лопатка (100) имеет полую конструкцию, и на ее наружной поверхности (101) предусмотрено множество первых пазов (105), которые представляют собой углубления.

Настоящее изобретение относится к способу ремонта участка (22) концевой части лопатки (10) турбины, имеющего структурный дефект. Способ включает области поврежденного участка со структурным дефектом на участке (22) концевой части и предоставление предварительно спеченной преформы (60), включающей первый участок (62), имеющий первый состав, и второй участок (64), имеющий второй состав.

Способ формирования компонента включает в себя смешивание порошкообразного основного материала и связующего с образованием смеси, формование смеси до желательной формы без плавления основного материала, удаление связующего из желательной формы с образованием каркаса, причем объем каркаса составляет основной материал на величину между 80 процентами и 95 процентами, и пропитывание каркаса материалом-депрессантом температуры плавления с образованием готового компонента, причем готовый компонент имеет менее чем однопроцентную пористость по объему.

Изобретение относится к области аэроакустического управления неподвижными лопатками в турбомашине летательного аппарата или в испытательном стенде для такой турбомашины. Турбомашина с расположенным спереди вентилятором имеет кольцевую стенку (160), содержащую предкрылок (16), предназначенный для разделения потока на первичный поток и вторичный поток и имеющий переднюю кромку, входные направляющие лопатки, предназначенные для направления первичного потока, и выходные направляющие лопатки, предназначенные для направления вторичного потока.

Изобретение относится к детали турбины, такой как лопатка турбины или, например, лопатка соплового аппарата, содержащей подложку, выполненную из монокристаллического суперсплава на основе никеля, содержащего рений и/или рутений, а также фазу γ’-Ni3Al, преобладающую в объёме, и фазу γ-Ni, при этом деталь содержит также подслой из металлического суперсплава на основе никеля, покрывающего подложку.

Предложенная группа изобретений относится к компоненту турбомашины, турбомашине, содержащей указанный компонент, и применению покрытия на по меньшей мере части поверхности компонента турбомашины, подверженной износу и/или загрязнению. Компонент турбомашины содержит субстрат, по меньшей мере частично покрытый по меньшей мере одним нанесенным путем химического никелирования (ENP) слоем композиции (C), содержащей смесь никеля, частиц (P) со средним размером менее 1 мкм и по меньшей мере одного из бора и фосфора.

Изобретение относится к области авиадвигателестроения, а именно к конструкциям охлаждаемых сопловых лопаток. Охлаждаемая сопловая лопатка турбины высокого давления, содержащая верхнюю и нижнюю полки, между которыми расположено полое перо аэродинамического профиля, выполненное за одно целое с верхней и нижней полками, причем перо имеет внутреннюю радиальную перегородку, выполненную за одно целое с пером лопатки, разделяющую полое перо на переднюю и заднюю внутренние полости относительно нагнетаемого потока воздуха, причем задняя внутренняя полость пера снабжена дефлектором, передняя внутренняя полость пера лопатки содержит перфорированные отверстия, в отличие от известного передняя внутренняя полость пера содержит дополнительные радиальные перегородки, выполненные за одно целое с пером лопатки, расположенные таким образом, что образуют полость охлаждения входной кромки пера, полость охлаждения вдоль спинки пера и полость охлаждения вдоль корыта пера, при этом полость охлаждения входной кромки пера лопатки выполнена с возможностью перекрытия при помощи пластины, полости охлаждения вдоль спинки и вдоль корыта выполнены с возможностью перекрытия с помощью элемента перекрывания, элемент перекрывания полостей охлаждения вдоль спинки и вдоль корыта выполнен в виде удлиненного фланца в верхней части дефлектора, установленного в задней внутренней полости пера, и соединен с помощью неразъемного соединения с верхней частью пера лопатки, а при этом полость охлаждения входной кромки пера лопатки выполнена с возможностью перекрытия при помощи пластины в нижней части, элемент перекрывания полостей охлаждения вдоль спинки и вдоль корыта выполнен в виде пластины в нижней части лопатки, установленной в задней внутренней полости пера с помощью неразъемного соединения с нижней частью пера лопатки, а при этом полость охлаждения входной кромки пера лопатки выполнена с возможностью перекрытия при помощи пластины в верхней части пера.

Изобретение относится к металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например монокристаллических рабочих лопаток турбины, работающих в газовой среде при высоких напряжениях и температурах до 1100°С.
Наверх