Альфа моносульфид марганца с эффектом гигантской магнитострикции



C01G1/12 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2793017:

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (RU)

Изобретение относится к сульфидным соединениям с магнитострикционным эффектом, которые могут быть использованы для нужд микроэлектроники, сейсмографии и космической техники, в частности, к созданию многофункциональных магнитострикционных материалов. Магнитострикционный материал альфа моносульфид марганца с гигантской магнитострикцией включает марганец и серу при следующем соотношении компонентов, мас.%: марганец 63,04, сера 36,96 или марганец 63,15, сера 36,85, или марганец 62,9, сера 37,1, при этом имеет кубическую кристаллическую структуру, пространственную группу Fm-3m(225), с объемом элементарной ячейки Техническим результатом изобретения является получение нового альфа моносульфида марганца, обладающего гигантской магнитострикцией. 4 ил., 2 табл.

 

Изобретение относится к сульфидным соединениям с магнитострикционным эффектом, которые могут быть использованы для нужд микроэлектроники, сейсмографии и космической техники, в частности, к созданию многофункциональных магнитострикционных материалов.

Известны редкоземельные соединения ТbFе2, DyFe2, SmFe2 [Белов К.П. Магнитострикционные явления и их технические приложения. М., Наука, 1987; Магнитострикционные явления, материалы с гигантской магнитострикцией, СОЖ, №3, 112 (1998)] с величиной магнитострикции λ≥2.5×10-3, которые можно использовать в качестве магнитострикционных преобразователей в информационных системах [А.С. №1757428 (СССР), МКИ G01B 17/00, опубл. 30.02.92, Бюл. №32].

Недостатком этих соединений является ограниченная область температур (низкие температуры, ниже 20-50 K) и высокая стоимость редкоземельных материалов.

Известны оксидные редкоземельные соединения марганца типа La1-xАхМnО3 (А=Са, Sr, Pb и т.д.; 0<Х≤0.4) [Нагаев Э.Л. Манганиты лантана и другие магнитные полупроводники с гигантским магнитосопротивлением [УФН. - 1996. - Т.166, №8. - С.796-857], которые имеют кристаллическую структуру перовскита, являются полупроводниками и претерпевают при температуре перехода ферромагнетик-парамагнетик в области T~180÷200 K эффект гигантской магнитострикци (ГМСТ) до (2÷6)×10-4 в магнитном поле 200 кЭ [A.M. Кадомцева и др. Аномалии теплового расширения и магнитострикции при фазовых переходах в монокристаллах La1-xSrxMnO3, ФТТ, т.42, в.6, 1077-1082 (2000)].

Недостатком указанных веществ является высокая стоимость входящих в их состав редкоземельных элементов.

Наиболее близким к заявляемому изобретению по технической сущности является железомарганцевый сульфид FexMn1 - xS [патент РФ №2 435 734 C2, Бюл. № 34 от 10.12.2011 (прототип)], содержащий компоненты при следующем соотношении, атом.%: Fe - 11,5 – 18,55; Мn 36,78 - 36,7 и S - 51,6-44,71. Данное вещество в виде монокристаллов получается путем сульфидизации рассчитанных смесей окислов металла или оксида марганца и металлического железа в горизонтальном кварцевом реакторе с последующей кристаллизацией сульфида из расплава.

Недостатком известного монокристаллического железомарганцевого сульфида FexMn1- xS является сложная технология приготовления с участием плохо контролируемых компонентов Fe, FeO, Fе2О3 и низкие значения магнитострикции (±250-270)*10-6 в магнитных полях до 120 кЭ.

Техническим результатом изобретения является получение нового альфа моносульфида марганца, обладающего гигантской магнитострикцией.

Технический результат достигается тем, что магнитострикционный материал альфа моносульфид марганца, с гигантской магнитострикцией, включает марганец и серу при следующем соотношении компонентов, мас.%: марганец 63,04, сера 36,96 или марганец 63,15, сера 36,85, или марганец 62,9, сера 37,1, при этом имеет кубическую кристаллическую структуру, пространственную группу Fm-3m(225), с объемом элементарной ячейки

Перечисленные выше отличительные признаки позволяют сделать вывод о соответствии заявленного технического решения критерию «новизна».

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данных и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежами.

На фиг.1 показана типичная рентгенограмма и SEM – скан образцов альфа моносульфид марганца (α-MnS).

На фиг.2 представлены типичные зависимости угла потерь (устанавливающего связь между фазами тока и напряжения на частотах от 20 Hz до 1 МНz) материала α-MnS, наблюдаемые при Н=0 в интервале 4.2-300 K, и обратной магнитной восприимчивости, измеренной в магнитных полях от 500 Э до 50 кЭ.

На фиг.3 представлены типичные магнитополевые зависимости диэлектрической проницаемости материала α-MnS при температурах 4,2-10 K в магнитных полях до 70 кЭ.

На фиг.4 представлены зависимости магнитострикции материала α-MnS, наблюдаемые в магнитных полях до 90 кЭ в температурном диапазоне 4,2-150 K.

Для получения материала α-MnS с гигантской магнитострикцией были подготовлены три состава шихты (в пересчете на чистые элементы) с содержанием:

мас.%:

Таблица 1 Состав Mn S
1 MnS 63,04 36,96
2 MnS 63,15 36,85
3 MnS 62,9 37,1

Для синтеза материала α-MnS первоначально были синтезированы порошковые сульфиды, которые получены путем сульфидизации рассчитанных смесей мелкодисперсных порошков оксидов марганца МnO2, МnO3 в горизонтальном кварцевом реакторе с использованием в качестве контейнера стеклоуглеродных лодочек. Нагрев смесей оксидов марганца осуществлялся до 700-800°С с помощью кварцевых галогенных ламп. В качестве сульфидирующих агентов использовались газообразные продукты термолиза роданида аммония, инертным газом-носителем служил гелий. Процесс сульфидизации осуществлялся в течение 16 часов. В процессе синтеза образцы несколько раз подвергали перетиранию с целью гомогенизации. Проверка полноты сульфидирования образцов контролировалась их взвешиванием и рентгенофазовым анализом. Исходный синтезированный порошок α-MnS имел зеленый цвет, характерный для альфа фазы моносульфида марганца. Кристаллизация полученных порошковых сульфидов α-MnS выполнена из расплава в инертной среде в стеклоуглеродных контейнерах с использованием индукционного нагрева протягиванием контейнера через одновитковый индуктор со скоростью 5-10 мм/час. Общее время, необходимое для осуществления полного технологического процесса выращивания кристаллов, составляет 6 часов.

В результате процесса кристаллизации из расплава выращены блочные монокристаллы α-MnS, размерами до 10×10×15 мм. Рентгенограмма, характерная для измельченного магнитострикционного материала α-MnS показана на фиг.1. При 300 K магнитострикционный материал α-MnS имеет кубическую кристаллическую структуру NaCl-типа (пространственная группа Fm-3m(225)) с объемом элементарной ячейки

Фазовый химический состав материала α-MnS, определенный методом сканирующей электронной микроскопии SEM, соответствует среднему содержанию, ат.% S=50±0.5, Mn=50±0.5, какие либо магнитные примеси или окислы в материале отсутствуют.

На фиг. 2а представлены типичные зависимости угла потерь (устанавливающего связь между фазами тока и напряжения на частотах от 20 Hz до 2 МНz), наблюдаемые при Н=0 в интервале 4.2-300 K. Результаты свидетельствуют, что в области 150± 5 K для f=20 Hz в магнитострикционном материале α-MnS реализуется переход диэлектрик – полупроводник, о чем свидетельствует сдвиг фаз на 90°. С ростом частоты область фазового перехода расширяется.

На фиг.2b представлены типичные температурные зависимости магнитной

восприимчивости магнитострикционного материала α-MnS. Ориентация приложенного магнитного поля Н соответствует плоскостям типа (100) плоскопараллельного образца. Результаты свидетельствуют о наличии антиферромагнитного перехода при TN =150±2 K для Н=500 Э и двух магнитных переходов TS = 130±5 K и TN =150±2 K в магнитных полях Н=30 и 50 кЭ. Температуры магнитного перехода антиферромагнетик-парамагнетик соответствует температуре перехода диэлектрик-полупроводник.

На фиг.3 представлены типичные магнитополевые зависимости магнитодиэлектрического коэффициента α-MnS, (ε’(H)-ε’(0))/ε’(0), наблюдаемые при 4.2 K и 10 K в магнитных полях до 70 кЭ, ε’ – действительная часть диэлектрической проницаемости.

На фиг.4 представлены зависимости продольной магнитострикции материала α-MnS от магнитного поля при разных температурах.

Магнитострикционные параметры материала α-MnS представлены в Таблице 2.

Таблица 2. Магнитострикционные параметры материала α-MnS: Нс-критическое магнитное поле переключения, λII max – максимальное значение магнитострикции, HS – магнитное поле переполюсации, при котором происходит смена знака магнитострикции.

T, K Hc, kOe λIImax, 10-6 HS, kOe
4,2 50±5 - 863 78±2
50 69±2 -1244 > 90
100 89 -888 -
130 24±2 +10 50±5
150 90 +19 -

Из фиг. 1-4 и таблицы 2 следует, что заявляемое вещество, магнитострикционный монокристаллический альфа моносульфид марганца α-MnS, имеющий кубическую кристаллическую структуру NaCl-типа (пр.гр. Fm-3m(225)) с объемом элементарной ячейки в диэлектрическом антиферромагнитном состоянии в диапазоне температур 4,2÷100 K обладает высоким значением магнитострикции, превышающим типичные величины магнитострикции прототипа в меньших магнитных полях (до 90 кЭ), а также возможностью управления знаком магнитострикции и поведением λ(Н,Т) посредством выбора рабочей температуры, при одновременном изменении диэлектрических параметров.

Использование заявляемого изобретения позволяет:

- разрабатывать элементы микро- и наноэлектроники на основе эффекта гигантской магнитострикции в разных технологических областях;

- сократить финансовые затраты на изготовление магнитострикционных устройств.

Магнитострикционный материал альфа моносульфид марганца с гигантской магнитострикцией, включающий марганец и серу при следующем соотношении компонентов, мас.%: марганец 63,04, сера 36,96, или марганец 63,15, сера 36,85, или марганец 62,9, сера 37,1, при этом имеет кубическую кристаллическую структуру, пространственную группу Fm-3m(225), с объемом элементарной ячейки



 

Похожие патенты:

Изобретение относится к области получения монокристаллов бората железа. Способ повторного использования раствор-расплава при синтезе бората железа FeBO3 заключается в том, что используют раствор-расплав, содержащий компоненты Fe2O3 - В2О3 - PbO - PbF2, после синтеза сливают раствор-расплав, далее рентгенофлуоресцентным анализом (РФА) определяют концентрацию железа W(Fe) и свинца W(Pb) в слитом раствор-расплаве для вычисления параметра состояния «n» по формуле где W(Fe) - концентрация железа, W(Pb) - концентрация свинца, при этом параметр «n» в исходном растворе-расплаве выбирают равным 0,1, при снижении параметра «n» в слитом раствор-расплаве вычисляют количество оксида железа, израсходованного при синтезе FeBO3, восстанавливают раствор-расплав путем добавления в него рассчитанного количества FeBO3 и разогрева до 900°С, проводят гомогенизацию восстановленного раствор-расплава при температуре 900°С в течение суток, снова исследуют его методом РФА для контроля состояния, определяя параметр «n», и при приближении значения «n» к исходному используют восстановленный раствор-расплав для повторного синтеза FeBO3.

Изобретение относится к области получения высокосовершенных монокристаллов 57FeBO3. Способ многократного использования раствора-расплава при синтезе 57FeBO3 заключается в том, что после синтеза 57FeBO3 раствор-расплав сливают, среди синтезированных кристаллов отбирают высокосовершенные монокристаллы 57FeBO3 с размерами более 5 мм в поперечнике без видимых дефектов поверхности и кристаллы 57FeBO3 размерами менее 5 мм в поперечнике и с видимыми дефектами поверхности, далее восстанавливают раствор-расплав путем растворения в нем дефектных кристаллов 57FeBO3 при температуре до 900°С и гомогенизации путем выдержки при 900°С в течение 20 ч, снижения температуры до 800°С за 15 мин, выдержки 3 ч, нагрева до 900°С за 15 мин, выдержки в течение 30 ч, снижения температуры до 800°С за 15 мин, выдержки 3 ч, нагрева до 900°С за 15 мин, выдержки в течение 40 ч, затем рентгенофлуоресцентным анализом определяют концентрацию железа W(57Fe) и свинца W(Pb) в восстановленном растворе-расплаве для вычисления параметра состояния раствора-расплава и при величине параметра 0,05≤n≤0,1 многократно используют раствор-расплав как пригодный для последующего роста кристаллов 57FeBO3.

Изобретение относится к технологии получения кристаллов гидроксиламинсульфата (ГАС), который используют в производстве капролактама и химических реактивов. Способ получения кристаллов гидроксиламинсульфата (ГАС) из водного раствора ГАС включает получение технологического раствора ГАС 1, его упаривание 2, 3 при повышенной температуре в вакууме, кристаллизацию 11 упаренного раствора при перемешивании с получением смеси раствора ГАС и кристаллов ГАС, центрифугирование 15, сушку 19 горячим воздухом и получение нескольких маточных растворов ГАС 17, 22, при этом упаривание 2, 3 проводят при остаточном давлении 300±10 мм рт.ст., процесс упаривания технологического раствора ГАС начинают при 80°С и завершают при 85°С, а окончание процесса упаривания определяют по получению в нейтрализаторе 8 конденсата 6 в объеме 35-40% от начального объема технологического раствора ГАС, кристаллизацию 11 проводят при перемешивании и температуре 9±2°С в течение 12 ч, а полученную после кристаллизации смесь 14 раствора ГАС и кристаллов ГАС направляют на стадию центрифугирования 15 с получением первичного маточного раствора ГАС 17 и кристаллов ГАС 16, при этом объединяют первичный маточный раствор ГАС 17 от обработки не менее чем двух порций технологического раствора ГАС и осуществляют упаривание 2, 3 объединенного первичного маточного раствора ГАС, которое начинают при температуре 85±3°С, завершают при температуре 90±3°С, и заканчивают упаривание при получении в нейтрализаторе 8 конденсата 6 в объеме 10-15% от начального объема первичного маточного раствора ГАС 17, при этом кристаллизацию 11 проводят при перемешивании и температуре 9±2°С в течение 12 ч, а полученную после кристаллизации смесь 14 раствора ГАС и кристаллов ГАС направляют на стадию центрифугирования 15 с получением дополнительного количества кристаллов ГАС 21 и вторичного маточного раствора ГАС 22, который возвращают на стадию получения технологического раствора ГАС 1, при этом из конденсата 6 получают раствор сульфата аммония 9 для утилизации на биологических очистных сооружениях.

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава Sm0,78Sc3,22(BO3)4 нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки а=7,6819 Å, b=9,8088 Å, с=11,9859 Å, β=105,11, обеспечивает генерацию второй гармоники при накачке на длине волны 1064 нм, излучает свет от 550 нм до 750 нм.

Изобретение относится к области выращивания смешанных монокристаллов сульфата кобальта-никеля-калия K2(Co,Ni)(SO4)2⋅6H2O (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона содержит операцию приготовления маточного раствора с последующим охлаждением маточного раствора в кристаллизаторе, внутри которого помещен затравочный кристалл, при этом в качестве маточного раствора используют водный раствор солей сульфатов никеля, кобальта и калия с соотношением K2Ni(SO4)2⋅6Н2О/K2Co(SO4)2⋅6Н2О в пределах от 2:1 до 1:2 по массе, который нагревают до температуры растворения (гомогенизации) на 8-10°С выше температуры ликвидуса данного раствора до полного растворения этих солей в водяном термостате с механической мешалкой, затем раствор охлаждают до температуры на 8-10°С ниже своего ликвидуса и выдерживают в течение суток с постоянным перемешиванием, обеспечивающим зарождение и рост спонтанных кристаллов, далее раствор отстаивают в течение 1 ч в термостате без перемешивания с осаждением твердой фазы, после чего часть раствора фильтруют через мембранный фильтр с размером пор 0,2 мкм в ростовую емкость (кристаллизатор), после чего кристаллизатор с затравкой, закрепленной на герметично закрывающейся крышке, помещают в сухой термостат с возможностью переворота вокруг горизонтальной оси на 180° в процессе роста, нагревают до температуры на 8-10°С выше ликвидуса в течение 24 ч, охлаждают до температуры на 1-5°С выше ликвидуса и вводят затравку в раствор переворотом кристаллизатора на 180°, дальнейшее охлаждение проводят сначала со скоростью от 1 до 2 град/ч до температуры на 1°С ниже ликвидуса, затем до температуры на 9-10°С ниже ликвидуса в течение от 1 до 2 месяцев, исключая принудительное перемешивание раствора и обеспечивая поддержание переохлаждения раствора не менее 5°С, после чего переворотом кристаллизатора на 180° выросший кристалл освобождают от раствора и охлаждают до комнатной температуры.

Изобретение относится к технологии получения монокристаллов CoSi химическим транспортом паров. Процесс ведут в кварцевых ампулах при разности температур в горячей и холодной зонах в 100°С.

Изобретение относится к технологии переработки минерального сырья и предназначено для комплексного использования отходов металлургического и горнорудного производства. Способ получения сульфата магния из магнийсодержащего сырья включает подготовку исходного сырья к выщелачиванию, выщелачивание магния из сырья раствором серной кислоты при нагревании с добавлением промывной воды, фильтрацию полученной пульпы с отделением раствора сульфата магния от нерастворимого кека с последующей очисткой сернокислотного раствора от примесей нейтрализацией и фильтрацией пульпы с отделением железистого осадка от очищенного раствора сульфата магния, упаривание и кристаллизацию очищенного раствора сульфата магния, отделение кристаллов сульфата магния фильтрацией маточного раствора, при этом в качестве магнийсодержащего сырья используют серпентинитовые руды или магнийсодержащие пыли металлургического производства, процесс выщелачивания ведут серной кислотой с концентрацией 300-500 г/л, а нейтрализацию раствора сульфата магния осуществляют гидроксидом магния с концентрацией 200-300 г/л и добавкой пероксида водорода до достижения рН=7,0-7,5, причем из полученного железистого осадка извлекают магний посредством кислотной репульпации серной кислотой и отделения отмытого железистого осадка от промывных вод, которые направляют на выщелачивание исходного сырья.

Изобретение относится к области роста кристаллов, в частности, к выращиванию смешанных монокристаллов K2(Со,Ni)(SO4)2x6H2O (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия содержит кристаллизатор с герметичной крышкой и закрепленной на ней затравкой 7, помещенный в тепловой узел с возможностью переворота вокруг горизонтальной оси на 180°C в процессе роста, при этом тепловой узел выполнен в виде шахтной печи с двумя независимыми нагревателями 6, 9, а кристаллизатор состоит из верхней 3 и нижней 8 - ростовой частей, различающихся по объему как 100/1, с диаметром нижней части, соответствующей размеру получаемого кристалла.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Изобретение относится к технологии получения минеральных солей и удобрений и может быть использовано для получения нитрата калия. Способ получения нитрата калия включает конверсию раствора смеси нитрата натрия с хлоридом калия, при которой в раствор исходной смеси вводят при нагревании нитрат натрия.

Изобретение относится к способу получения композита Mn3O4/C. Способ включает обработку в сольвотермальных условиях реакционной смеси, содержащей водный раствор перманганата калия KMnO4 и углеродсодержащего реагента.
Наверх