Патенты автора Рыженков Артем Вячеславович (RU)

Изобретение относится к области комбинированных источников энергии. Тригенерационный энергетический комплекс содержит электрический генератор 5, теплообменный контур 12 и бойлер 14. Комплекс также снабжен микрогидроэлектростанцией 1 и системой автоматического управления 6, состоящей из регулирующего и распределяющего энергию контроллера 7, связанного электрически с аккумулятором 8, автономной электросетью 9, блоком индуктивной нагрузки 10 и микроэлектродвигателем 11 теплового насоса 15. Микрогидроэлектростанция 1 включает по меньшей мере одну проточную часть 2, имеющую электромагнитный клапан 3 и гидравлическую насос-турбину 4. Контур 12 состоит из парокомпрессионной установки 13 теплоотдачи и хладоснабжения, связанной с бойлером 14 и тепловым насосом 15 гидравлически. Изобретение направлено на повышение надежности, энергетической эффективности комплекса в целом. 1 ил.

Изобретение может быть использовано в машиностроении и микромеханике для уменьшения трения и износа в подшипниках скольжения. Сначала подготавливают рабочую поверхность изделий 1 путём полировки, обезжиривания в ультразвуковой ванне, обработки бензино-спиртовой смесью и термообработки в сушильном шкафу. Подготовленные изделия 1 размещают в вакуумной камере 2, изолируют от её корпуса и подключают к источнику импульсного отрицательного напряжения (напряжение смещения). Одновременно с откачиванием вакуумной камеры 2 ее нагревают нагревателями 5 для интенсификации процесса дегазации. После подачи в вакуумную камеру 2 плазмообразующего газа - аргона металлическую поверхность изделий 1 подвергают ионному травлению, для чего включают магнетрон 4. Затем напускают азот и проводят одновременное азотирование при нагреве поверхности изделий 1 до 200÷500°С. После этого на поверхность изделий 1 наносят переходный слой покрытия из по крайней мере одного слоя металла, карбида металла или нитрида металла при изменяющихся во времени отрицательном напряжении смещения и потоке реакционного газа, расход которого увеличивают одновременно с понижением напряжения смещения. После формирования переходного слоя магнетрон 4 выключают, на изделия 1 подают отрицательное напряжение и включают магнетрон 3 для нанесения основного слоя покрытия посредством высокомощного импульсного магнетронного распыления после разогрева мишени из Al0,75Mg0,75B14. Повышается качество и срок службы покрытия за счет увеличения допустимых контактных нагрузок и уменьшения коэффициента трения. 2 ил.
Изобретение относится к области защиты от коррозии металлов и может быть использовано в теплоэнергетике для использования при эксплуатации энергетического оборудования и трубопроводов, в том числе тепловых и атомных электрических станций, для снижения скорости коррозии металлических поверхностей оборудования и трубопроводов как в период эксплуатации, так и в период простоя, в том числе на период профилактических и ремонтных работ. Способ включает ввод консерванта в движущийся поток рабочего тела и консервацию в течение времени, необходимого для сорбции консерванта в количестве не менее 3 мг/м2, при этом в качестве консерванта используют водную эмульсию смеси первичных пленкообразующих алифатических аминов C16-C18, имеющую свойства текучести и гомогенности, водную эмульсию смешивают с циркулирующим в контуре энергетической установки рабочим телом, причем осуществляют ввод водной эмульсии с температурой 31-50°C. Технический результат изобретения заключается в повышении технологичности, расширении технологических возможностей, сокращении времени проведения консервации. 2 з.п. ф-лы, 3 пр.
Изобретение относится к композиции для получения термозащитного покрытия, которое может быть использовано на трубопроводах, паропроводах и оборудовании систем теплоснабжения, при строительстве различных сооружений нефтеперерабатывающей, газо-, нефтедобывающей и других отраслях промышленности. Композиция включает полые микросферы и кремнийорганическую эмульсию, а также дополнительно снабжена вспенивателем, введенным в кремнийорганическую эмульсию, целевой добавкой в виде оксида цинка и отвердителем в виде дибутилдиалурата олова при следующем соотношении компонентов, мас.%: кремнийорганическая эмульсия - 5-94, вспениватель - 1-10, полые микросферы - 3-45, целевая добавка - 1-30, отвердитель - 1-10. Техническим результатом изобретения являются высокие термозащитные свойства покрытия, которое может эксплуатироваться в диапазоне температур от минус 60 до 300°С в условиях повышенной влажности, обладать высокими теплоизолирующими свойствами, гибкостью.

Изобретение относится к области насосостроения. Реактивное рабочее колесо центробежного насоса содержит равномерно распределенных по окружности лопасти (1) с идентичными скелетами (2) профилей. Средние линии (3) межлопастных каналов (4) представляют собой геометрическое место точек - центров окружностей с диаметрами Di (i=1…n), вписанных между скелетами (2) соседних профилей на различных радиусах колеса. Внешние обводы межлопастных каналов (4) образованы кривыми (5) и (6), касательными к окружностям с диаметрами di<Di, концентричным окружностям, вписанным между скелетами (2). Диаметры di на любом i-м радиусе колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где D1 - диаметр Di окружности (7) в горле канала, когда i=1; s - толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и может иметь значения в диапазоне от 0,3 до 0,5. Изобретение направлено на снижение вихревых (диффузорных) потерь в межлопастных каналах рабочего колеса с одновременным увеличением его гидравлического КПД. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения. Насос содержит гетерогенную лопастную систему, лопасти (1-6) которой образуют между собой каналы (7). По меньшей мере две лопасти (1-3) имеют неодинаковые скелеты профилей. Все лопасти (1-6) имеют клинообразную форму. Внешние обводы каналов (7), одновременно очерчивающие и профили лопастей, образованы кривыми (8, 9), касательными к окружностям с диаметрами, концентричным окружностям с диаметрами Di, вписанным между скелетами (10) на различных радиусах колеса. При этом диаметры на любом радиусе рабочего колеса находятся по определенной формуле и зависят от значений диаметра окружности (11) в горле канала (7), толщины входной кромки профиля лопасти (1-6) и константы, имеющей значение более 1/4 и менее 1. Изобретение направлено на повышение КПД и расширение эффективной рабочей зоны центробежного насоса. 2 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. При эксплуатации паротурбинной установки, характеризующейся чередующимися режимами работы и простоя, в период простоя конденсатор с межтрубным и внутритрубным пространствами и очищенными от отложений латунными трубками отключают от системы оборотного водоснабжения и подключают к внутритрубному пространству конденсатора внешний источник горячей химически обессоленной воды, к межтрубному пространству конденсатора источник пара. Подключают к установке приготовления эмульсии поверхностно-активного вещества (ПАВ) источник ПАВ и источник горячей химически обессоленной воды. Подключают источник горячей химически обессоленной воды к межтрубному пространству конденсатора, подают в межтрубное и внутритрубное пространства конденсатора горячую химически обессоленную воду и высококонцентрированную эмульсию ПАВ. Выдерживают эмульсию с концентрацией 20÷60 мг/кг в квазистатических условиях в течение 8÷12 часов и ее дренируют. В период останова паротурбинной установки конденсатор отключают от внешних коммуникаций и дренируют его как по водяной, так и по паровой сторонам. Формируют на наружных и очищенных внутренних латунных трубках конденсатора моно- или полимолекулярную пленку ПАВ, соединяют источник химически обессоленной воды с внутритрубным пространством конденсатора, межтрубным пространством конденсатора и установкой приготовления эмульсии, соединяют межтрубное пространство с системой оборотного водоснабжения и источником пара, подключают к установке приготовления эмульсии ПАВ источник ПАВ. Изобретение позволяет обеспечить повышение эффективности паротурбинной установки посредством создания наилучших условий для конденсации пара на трубных поверхностях и снижения скорости накопления отложений на внутритрубных поверхностях конденсатора. 2 з.п. ф-лы, 1 ил.

Изобретение относится к установке для нанесения покрытий на поверхности деталей. Внутри корпуса вакуумной камеры установлен, по меньшей мере, один источник распыляемого материала, выполненный в виде N магнетронов, где N - целое число и N>1, и ионный источник. Внутри корпуса камеры расположена защитная капсула, а в центре камеры установлен высоковольтный источник напряжения смещения и низковольтный источник напряжения смещения. Карусель и держатель детали расположены внутри верхней части защитной капсулы. Детали расположены внутри нижней части защитной капсулы. Магнетроны и ионный источник установлены по периметру защитной капсулы. Верхняя часть защитной капсулы выполнена с верхним глухим торцом и закреплена на валу, выполненном полым, который установлен в верхней части корпуса камеры и жестко соединен с валом карусели в электрически изолированном узле верхней части защитной капсулы. Нижняя часть защитной капсулы выполнена с нижним глухим торцом и закреплена на валу, который установлен в нижней части корпуса вакуумной камеры и соединен муфтой с приводом возвратно-поступательного движения. Оси вращения верхней и нижней частей защитной капсулы, вала верхней части защитной капсулы, вала нижней части защитной капсулы, штанги, электрически изолированного узла, электрически изолированного стыковочного узла совпадают с осью вращения карусели. С внешней стороны корпуса вакуумной камеры, содержащего систему напуска газа, расположен многопозиционный электрический переключатель, выполненный с возможностью переключения высоковольтного и низковольтного источников напряжения смещения с вала карусели на вал верхней части защитной капсулы и вал нижней части защитной капсулы. Изобретение позволяет повысить качество покрытий за счет защиты поверхности деталей от привносимых дефектов. 1 ил.
Изобретение относится к области очистки и защиты внутренних поверхностей труб от коррозии и накопления отложений и используется для повышения надежности и ресурса систем теплоснабжения. Способ защиты внутренних поверхностей систем теплоснабжения от коррозии и накопления отложений включает ввод октадециламина (ОДА) в систему теплоснабжения. При этом в течение времени, превышающем период циркуляции теплоносителя в системе теплоснабжения не менее чем в 50 раз, осуществляют повышение концентрации октадециламина в теплоносителе до целевого уровня в 2-10 мг/кг. По достижении целевого уровня концентрации октадециламина в теплоносителе осуществляют поддержание данного уровня в течение времени, превышающем период циркуляции теплоносителя в системе теплоснабжения не менее чем в 100 раз. Изобретение позволяет сформировать равномерный устойчивый слой октадециламина на всей площади внутренней поверхности системы теплоснабжения, оптимизировать расход ОДА и сократить время обработки. 4 з.п. ф-лы.
Изобретение относится к трубопроводным системам, теплообменному оборудованию и позволяет улучшить гидродинамические и термодинамические характеристики поверхностей изделий из металлов и сплавов
Изобретение относится к трубопроводной транспортировке жидких сред

Изобретение относится к области защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов систем теплоснабжения и водоснабжения

 


Наверх