Реактивное рабочее колесо центробежного насоса



Реактивное рабочее колесо центробежного насоса
Реактивное рабочее колесо центробежного насоса
Реактивное рабочее колесо центробежного насоса

 


Владельцы патента RU 2613545:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (RU)

Изобретение относится к области насосостроения. Реактивное рабочее колесо центробежного насоса содержит равномерно распределенных по окружности лопасти (1) с идентичными скелетами (2) профилей. Средние линии (3) межлопастных каналов (4) представляют собой геометрическое место точек - центров окружностей с диаметрами Di (i=1…n), вписанных между скелетами (2) соседних профилей на различных радиусах колеса. Внешние обводы межлопастных каналов (4) образованы кривыми (5) и (6), касательными к окружностям с диаметрами di<Di, концентричным окружностям, вписанным между скелетами (2). Диаметры di на любом i-м радиусе колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где D1 - диаметр Di окружности (7) в горле канала, когда i=1; s - толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и может иметь значения в диапазоне от 0,3 до 0,5. Изобретение направлено на снижение вихревых (диффузорных) потерь в межлопастных каналах рабочего колеса с одновременным увеличением его гидравлического КПД. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области насосостроения и может быть использовано при проектировании и производстве насосов.

Известен способ снижения вихревых диффузорных потерь в межлопастном канале рабочего колеса центробежного насоса путем увеличения количества лопастей рабочего колеса (см., например, Пфлейдерер К. Лопаточные машины для жидкостей и газов. Водяные насосы, вентиляторы, турбовоздуходувки, турбокомпрессоры. 4-е перераб. изд. / пер. под ред. В.И. Поликовского. - М: ГНТИ, 1960). Увеличение количества лопастей приводит к снижению степени диффузорности межлопастного канала и, как следствие, к снижению отрицательного влияния относительного вихря на структуру течения. Вместе с тем, при этом увеличивается стеснение потока на входе в колесо и увеличивается площадь поверхностей трения лопастей о жидкость. Это приводит к росту гидравлических потерь в межлопастном канале и на его входе.

Однако в итоге увеличение количества лопастей хоть и снижает диффузорные потери, но не дает практического увеличения КПД рабочего колеса и насоса, чаще приводя к их уменьшению.

Наиболее близким по технической сущности к предлагаемому реактивному рабочему колесу центробежных насосов является рабочее колесо, описанное в книге Михайлов А.К., Малюшенко В.В. Лопастные насосы. Теория расчет и конструирование. - М.: Машиностроение, 1977, с.30, 32, рис.16), содержащее равномерно распределенные по окружности колеса лопасти с идентичными скелетами профилей, образующие между собой каналы с горлом, причем лопасти имеют преимущественно максимально тонкий аэродинамический профиль или минимально возможную постоянную толщину. Профиль лопастей строится на скелете - кривой, совпадающей с расчетной линией тока жидкости относительно колеса.

Недостатком таких колес является большие диффузорные (вихревые) потери в диффузорном межлопастном канале из-за отрицательного влияния относительного (осевого) вихря на структуру течения (см., например, Ломакин А.А. Центробежные и осевые насосы. - М.: Машиностроение, 1966). Следствие этого недостатка - снижение гидравлического КПД рабочего колеса и насоса в целом.

Недостатком такого решения является низкая эффективность использования центробежного насоса при значительных отклонениях режимов работы от расчетных из-за низких значений КПД.

Задачей изобретения является расширение эффективной рабочей зоны центробежного насоса с одновременным увеличением его гидравлического КПД.

Техническим результатом является снижение вихревых (диффузорных) потерь в межлопастных каналах рабочего колеса.

Это достигается тем, что реактивное рабочее колесо центробежного насоса, содержащее равномерно распределенные по окружности колеса лопасти с идентичными скелетами профилей, образующие между собой каналы с горлом, которые образованы так, что средние их линии есть геометрическое место точек - центров окружностей с диаметрами Di, вписанных между скелетами соседних профилей на различных радиусах колеса, а внешние обводы каналов образованы кривыми, касательными к окружностям с диаметрами di, меньшими диаметров Di, концентричным окружностям, вписанным между скелетами профилей, причем диаметры di на любом i-м радиусе рабочего колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где D1 есть диаметр Di в горле канала, s есть толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и имеет значение в диапазоне от 0,3 до 0,5.

Кроме того, тела лопастей могут быть выполнены по меньшей мере с одной внутренней замкнутой полостью.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлены общий вид реактивного рабочего колеса центробежного насоса, например, с шестью лопастями постоянной толщины, на фиг. 2 представлены зависимости относительного КПД центробежного насоса от режима его работы относительной объемной подачи рабочей среды для известного решения и изобретения.

Реактивное рабочее колесо центробежного насоса содержит, например, шесть равномерно распределенных по окружности лопастей 1 с идентичными скелетами 2 профилей. Средние линии 3 межлопастных каналов 4 представляют собой геометрическое место точек - центров окружностей с диаметрами Di (i=1…n), вписанных между скелетами 2 соседних профилей на различных радиусах колеса. Внешние обводы межлопастных каналов 4 образованы кривыми 5 и 6, касательными к окружностям с диаметрами di<Di, концентричным окружностям, вписанным между скелетами 2. При этом диаметры di на любом i-м радиусе рабочего колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где D1 - диаметр Di окружности 7 в горле канала, когда i=1; s - толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и может иметь значения в диапазоне от 0,3 до 0,5.

Реактивное рабочее колесо центробежного насоса работает следующим образом.

При вращении рабочего колеса, содержащего равномерно распределенные по окружности лопасти 1 с идентичными скелетами 2 профилей, жидкость под действием центробежной силы, возникающей вследствие силового взаимодействии лопастей 1 с потоком, начинает двигаться от горла канала, имеющего характерный размер - диаметр окружности 7, к периферии. Движение потока жидкости по межлопастным каналам 4, которые образованны кривыми 5 и 6, сопровождается вихревыми (диффузорными) потерями в значительно меньшем количестве.

Зависимости относительного КПД центробежного насоса известного решения (a) и изобретения (b) получены методом 3D моделирования в среде ANSYS Fluent. Анализ зависимостей показывает, что колесо согласно изобретению обеспечивает существенное повышение максимального КПД насоса по сравнению с прототипом при оптимальном режиме и значительно увеличивает зону эффективной работы насоса (условную зону, в которой при изменении подачи насоса его КПД изменяется в пределах 10% от максимального значения), что подтверждает достижение заявленного технического результата. Заявленный положительный эффект от применения изобретения подтвержден натурным экспериментом на консольно-моноблочном центробежном насосе КМ40-25-200.

Использование изобретения позволяет снизить вихревые (диффузорные) потери в межлопастных каналах рабочего колеса с одновременным увеличением его гидравлического КПД.

1. Реактивное рабочее колесо центробежного насоса, содержащее равномерно распределенные по окружности колеса лопасти с идентичными скелетами профилей, образующие между собой каналы с горлом, отличающееся тем, что каналы образованы так, что средние их линии есть геометрическое место точек - центров окружностей с диаметрами Di, вписанных между скелетами соседних профилей на различных радиусах колеса, а внешние обводы каналов образованы кривыми, касательными к окружностям с диаметрами di, меньшими диаметров Di, концентричным окружностям, вписанным между скелетами профилей, причем диаметры di на любом i-м радиусе рабочего колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где D1 есть диаметр Di в горле канала, s есть толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и имеет значение в диапазоне от 0,3 до 0,5.

2. Реактивное рабочее колесо центробежного насоса по п. 1, отличающееся тем, что тела лопастей выполнены по меньшей мере с одной внутренней замкнутой полостью.



 

Похожие патенты:

Изобретение относится к области машиностроения. Насос содержит гетерогенную лопастную систему, лопасти (1-6) которой образуют между собой каналы (7).

Изобретение относится к насосостроению и может быть использовано при конструировании погружных центробежных насосов для добычи жидкостей с механическими примесями из скважин.

Изобретение относится к насосостроению и может быть использовано при конструировании погружных насосов для добычи жидкостей с механическими примесями из скважин.

Группа изобретений относится к центробежным насосам. Рабочее колесо (2) для центробежного насоса, включающее в себя имеющий лопатки (8) первый закрывающий диск (4) и присоединенный посредством сварки к первому закрывающему диску (4) второй закрывающий диск (6).

Изобретение касается вертикального насоса с двусторонним всасыванием. Насос имеет спускной трубный узел, узел электродвигателя, расположенный на узле подвески и присоединенный к валу (15), спускные отверстия (120, 122), присоединенные к спускному трубному узлу, корпус (12) и колесо (14) с двусторонним всасыванием.

Изобретение относится к насосам необъемного вытеснения, а именно к рабочим колесам центробежных насосов. Рабочее колесо центробежного насоса содержит установленные между ведущим и покрывным дисками основные криволинейные лопатки, образующие межлопаточные каналы, и установленные в последних укороченные дополнительные криволинейные лопатки, причем выходные кромки всех лопаток находятся на наружной окружности рабочего колеса, укороченные дополнительные криволинейные лопатки установлены ближе к основным криволинейным лопаткам в направлении вращения колеса, причем расстояние по наружной окружности рабочего колеса от выходной кромки основной криволинейной лопатки до выходной кромки укороченной дополнительной криволинейной лопатки в направлении вращения рабочего колеса составляет от 1,2 до 1,4 расстояния от выходной кромки укороченной дополнительной криволинейной лопатки до выходной кромки смежной с ней основной криволинейной лопатки в направлении вращения рабочего колеса, а входная кромка укороченной дополнительной криволинейной лопатки расположена от оси рабочего колеса в радиальном направлении на расстоянии, составляющем от 0,25 до 0,42 диаметра наружной окружности рабочего колеса.

Изобретение относится к насосам необъемного вытеснения, а именно к рабочим колесам центробежных насосов. Рабочее колесо промежуточной ступени центробежного насоса содержит ведущий диск, покрывной диск и расположенные между ними лопатки.

Изобретение относится к машиностроению и может быть использовано при изготовлении погружных электроцентробежных насосов для добычи нефти. Способ изготовления рабочего колеса и направляющего аппарата ступени погружного многоступенчатого центробежного насоса включает ввод алюминия под поверхность расплава при температуре 1410-1480°С.

Изобретение относится к насосной технике, в частности к центробежным насосам. В центробежном насосе, содержащем корпус с патрубками, вал с ротором, имеющий лопатки, согласно изобретению лопатки выполнены в виде двух групп.

Группа изобретений относится к машиностроению и может быть использована в погружных многоступенчатых электроцентробежных насосах для добычи нефти. Насос содержит корпус, вал и ступени, состоящие из рабочего колеса и направляющего аппарата, выполненные литьем из чугуна следующего состава, масс.%: углерода - 3,2-3,9, кремния - 0,2-1,0, марганца - 0,5-0,8, хрома - 0,1-0,5, меди - 0,8-1,5, алюминия - 1,7-4,0, титана - не более 0,3, фосфора - не более 0,2, серы - не более 0,02, железо - остальное.
Наверх