Патенты автора Никулин Сергей Михайлович (RU)

Изобретение относится к области получения тугоплавких соединений, конкретно к способу получения карбонитрида циркония Zr2CN кубической системы. Способ включает азотирование карбида циркония. Процесс азотирования проводят в атмосфере аргона при температуре 1400-2100°С, а в качестве азотирующего агента используют нитрид магния при следующем соотношении компонентов, мас.ч.: карбид циркония - 100-120, нитрид магния - 25-250. Предлагаемый способ позволяет повысить выход карбонитрида циркония. 1 табл.

Изобретение относится к технике измерения на СВЧ и может быть использовано для определения S-параметров устройств и электронных компонентов в нестандартных линиях передачи и плоских объектов в свободном пространстве. Технический результат состоит в повышении точности измерения S-параметров. Способ включает соединение двух переходов нестандартной электрически длинной линией передачи длиной L и измерение параметров , определение коэффициентов отражения от коаксиальных разъемов, соединение каждого перехода с отрезком линии длиной L/2, образуя цепи а и b, короткозамкнутые или разомкнутые на конце, и измерение коэффициентов отражения со стороны коаксиальных разъемов, определение параметров цепей а и b после чего включают между цепями а и b измеряемый объект, измеряют параметры соединения S11, S2l, Sl2, S22 и определяют параметры объекта из соотношений 3 з.п. ф-лы, 9 ил.
Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека. Эндопротез тазобедренного сустава, эндопротез коленного сустава, эндопротез локтевого сустава, эндопротез сустава пальца кисти, содержат элементы, выполненные из композиционного материала для замещения костной ткани, содержащего пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70%, и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При этом в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротезов до значений, равных и выше максимальной прочности костной ткани человека, 4 н. и 8 з.п. ф-лы.

Изобретение относится к области биохимии. Предложен способ приготовления гетерогенного биокатализатора. Способ включает выращивание обладающих нитрил- и амидгидролизующей активностью клеток бактерий в жидкой минеральной среде до стационарной фазы, смешивание клеток бактерий путём осаждения с помощью центрифугирования, отмывание калий-фосфатным буфером, повторное центрифугирование, ресуспендирование в калий-фосфатном буфере и инкубирование с многослойными углеродными нанотрубками на шейкере. После инкубирования суспензию с несвязавшимися клетками бактерий отделяют путем фильтрования от агрегатов бактерий с многослойными углеродными нанотрубками. Изобретение обеспечивает сохранение ферментативной активности, легкость отделения биокатализатора от реакционной среды, содержащей продукт реакции, а также возможность повторного использования. 4 ил., 1 табл., 5 пр.

Изобретение относится к нанотехнологии и может быть использовано при получении нанокомпозитов. В реактор подают подложку, на которую нанесено соединение никеля, и/или кобальта, и/или железа, полученное смешиванием и реакцией формиатов указанных металлов с азотсодержащим соединением, таким как монодентантный лиганд из ряда, включающего аммиак, и/или метиламин, и/или моноэтаноламин в количестве 18-42 г⋅экв на 1 г⋅экв формиата металла или бидентантный лиганд из ряда, включающего гидразин, и/или этилендиамин, и/или диэтаноламин в количестве 9-21 г⋅экв на 1 г⋅экв формиата металла. Подложка представляет собой ткань из минеральных или углеродных волокон, например из углерод-углеродного композиционного материала с пористостью 2-20 %; из металла, например титана, меди, тантала, поверхность которого предварительно обработана плазменно-электрохимическим или гидротермальным оксидированием; из углерод-керамического композиционного материала с пористостью 0,5-10 %. Подложка может обладать сложной геометрией поверхности. В реакторе указанное соединение разлагается при высокой температуре с образованием каталитически активной формы частиц без применения восстановительной газовой среды. На полученных частицах происходит синтез углеродных нанотрубок при последующей подаче соединений углерода через подложку, служащую для ориентации углеродных нанотрубок. Изобретение позволяет синтезировать углеродные нанотрубки на подложках любого состава и геометрии, повысить удельный выход нанотрубок. 7 з.п. ф-лы, 3 ил., 1 табл., 8 пр.

Изобретение относится к медицине, конкретно к области композиционных материалов для изготовления эндопротезов. Композиционный материал для замещения костной ткани содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При создании композиционного материала для замещения костной ткани в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Композиционный материал по изобретению имеет прочность при циклическом нагружении, равную и выше максимальной прочности костной ткани человека. 1 табл.

Изобретение предназначено для химической промышленности и медицины и может быть использовано при изготовлении фильтрующих элементов, адсорбентов, носителей катализаторов, материалов для восстановления костной ткани. Сначала в синтетическую термореактивную смолу вводят 0,01-0,30 мас. % углеродных нанотрубок. Затем полученным составом пропитывают заготовку из пенополиуретана. Пропитанную заготовку термообрабатывают в атмосфере природного газа. Нагрев от 100 до 600°C ведут со скоростью 70-90°C/ч, от 600 до 1000°C - со скоростью не менее 300°C/ч. После этого проводят изотермическую выдержку при 1000°C в течение 2 часов. Получают высокопористый ячеистый углеродный материал с пористостью 80-90%, плотностью 0,2-0,4 г/см3, с содержанием углерода не менее 99,9%. 1 табл.

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред. Углерод-карбидокремниевый композиционный материал содержит углеродный волокнистый наполнитель и матрицу, состоящую из карбида кремния, кремния и углерода. В нем часть карбида кремния представляет собой наноразмерные волокна или трубки, размеры отдельных фрагментов кремния не превышают 10 мкм, а компоненты материала содержатся в следующем количестве, вес.%: углеродные волокна 29-40,1, карбид кремния 35-56,4 при содержании в нем карбидизовавшихся углеродных волокон не более 3,8, свободный кремний 2-10, свободный углерод - остальное. На основе армированного углеродными волокнами каркаса и коксообразующего связующего формируют углепластиковую заготовку, проводят ее карбонизацию, формируют в порах материала заготовки активный к кремнию углерод и силицируют полученную заготовку парожидкофазным методом. Перед формированием заготовки насыщают каркас пироуглеродом вакуумным изотермическим методом до его содержания 10-18,5 вес.%, а формирование в порах материала заготовки перед ее силицированием активного к кремнию углерода осуществляют путем выращивания в порах наноразмерного углерода в форме волокон или трубок. Первоначальную доставку кремния в поры материала при паро-жидкофазном методе силицирования осуществляют предпочтительно путем капиллярной конденсации его паров в интервале 1300-1500°C. Технический результат изобретения - повышение ресурса работы изделий в условиях агрессивной среды, высокого теплового и механического нагружения. 2 н.. и 2 з.п. ф-лы, 16 пр., 1 табл., 1 ил.

Изобретение относится к области углерод-каридокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением. Углерод-карбидокремниевый композиционный материал содержит армирующие углеродные волокна и углерод-карбидокремниевую матрицу, открытые поры которой заполнены свободным кремнием; причем компоненты материала имеют близкие значения КЛТР. В нем свободный кремний распределен по всему объему материала, а размер его отдельных фрагментов вблизи наружной поверхности материала не превышает 30 мкм; при этом свободный кремний содержит в своей структуре растворенные в нем углерод и азот. В порах заготовки на основе углеродной ткани и пироуглерода формируют углерод в виде ультра- и/или нанодисперсных частиц, способных адсорбировать азот и углеродсодержащие газы, и проводят ее силицирование паро-жидкофазным методом. При этом массоперенос кремния в поры материала осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C. Технический результат - обеспечение возможности использования герметичных изделий из УККМ при температурах выше температуры плавления кремния, в том числе в вакууме. 2 н.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к углерод-карбидокремниевым композиционным материалам. Технический результат изобретения заключается в повышении эксплуатационных характеристик изделий. Формируют каркас из углеродных волокон, уплотняют его углеродом с получением заготовки из углерод-углеродного композиционного материала с открытой пористостью, уменьшающейся от защитных слоев к несущим слоям материала будущего изделия от 20-60 до 6-12%. Заполняют открытые поры материала заготовки дисперсным углеродом и проводят силицирование. В качестве дисперсного углерода используют нанодисперсный углерод или его смесь с мелкодисперсным углеродом с размером частиц не более 5 мкм. Силицирование осуществляют парожидкофазным методом при первоначальном массопереносе кремния в поры материала путем капиллярной конденсации его паров в интервале температур на заготовке 1300-1600°C и давлении в реакторе не более 27 мм рт.ст. при температуре паров кремния, превышающей температуру заготовки соответственно на 100-10°. Затем проводят нагрев и выдержку заготовки при 1750-1850°C. 2 з.п. ф-лы, 1 табл.

Изобретение предназначено для использования в химической, химико-металлургической, в авиационной и космической отраслях промышленности. Формируют каркас углерод-углеродного композиционного материала (УУКМ) из низкомодульных углеродных волокон, заполняют его поры дисперсным углеродным наполнителем путем выращивания в них каталитическим методом в газовой фазе наноразмерного углерода в форме частиц, волокон или трубок до его содержания 3,7-10,9% от веса волокнистого каркаса. Затем насыщают матрицей из пироуглерода термоградиентным методом при избыточном давлении метана 0,025-0,03 кгс/см2, температуре в зоне пиролиза 840-920°С и скорости ее передвижения 0,1-0,25 мм/ч. Полученный УУКМ содержит указанные компоненты в следующем количестве, вес.%: углеродные волокна - 38,7-46,1; нанодисперсный наполнитель - 1,7-4,2; пироуглеродная матрица - 49,7-59,6; имеет плотность 1,41-1,55 г/см3. Нанодисперсный углеродный наполнитель содержится как в межволоконных порах каркаса, так и в межфиламентных порах углеродных волокон. Технический результат - повышение прочностных свойств УУКМ без ухудшения других эксплуатационных характеристик. 2 н.п. ф-лы, 2 табл., 12 пр.

Изобретение относится к области получения композиционных материалов на основе углерод-керамической матрицы и изделий из них, теплозащитного, конструкционного назначений, предназначенных для эксплуатации в условиях комплексных статических и динамических нагрузок при температурах до 2000°С в окислительной и абразивосодержащих средах (авиакосмическая техника и металлургия). Способ изготовления изделий из керамоматричного композиционного материала включает формирование каркаса из жаростойких волокон, частичное уплотнение его углерод-керамическим матричным материалом с использованием соответствующих прекурсоров углерода и карбида и/или нитрида кремния и силицирование полученной заготовки. На стадии, непосредственно предшествующей силицированию, в порах материала заготовки формируют наноструктурный углерод в виде частиц, нитей или трубок, а силицирование осуществляют паро-жидкофазным методом с введением кремния в поры материала путем капиллярной конденсации его паров при температуре, превышающей температуру силицируемой заготовки. Технический результат - повышение работоспособности изделий в условиях нагрева до высоких температур и механического нагружения в окислительной среде. 2 з.п. ф-лы, 1 табл. 10 пр.

Изобретение относится к области углерод-карбидокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением. Способ изготовления герметичных изделий из УККМ включает изготовление заготовки из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР, и ее силицирование паро-жидкофазным методом при температуре 1700-1850°C. Для силицирования берут заготовку из углерод-углеродного композиционного материала (УУКМ) на основе углеродного волокнистого каркаса и углеродной матрицы, имеющего плотность 75-80% от максимально возможной для данного типа материала, а силицирование проводят в 2 этапа, чередуя его с введением в поры материала углерода. На 1-м этапе силицирования кремний вводят в поры материала заготовки в количестве 50-70% от содержания углеродной матрицы, осуществляя это в интервале температур 1300-1500°C при температуре паров кремния, превышающей температуру силицируемой заготовки, с последующим нагревом заготовки до 1750-1800°C и охлаждением при температуре, превышающей температуру паров кремния. После завершения 1-го этапа силицирования в порах образовавшегося УККМ формируют углерод в виде ультра и/или нанодисперсных частиц, а затем проводят окончательное силицирование, осуществляя первоначальный массоперенос кремния в поры материала заготовки аналогично 1-му этапу. Техническим результатом изобретения является получение герметичного изделия из УККМ с высоким содержанием стойкой к окислению карбидокремниевой матрицы, упрочненной лишь незначительно карбидизовавшимися углеродными волокнами. 2 з.п. ф-лы, 1 табл., 17 пр.

Изобретение относится к области углерод-карбидокремниевых композиционных материалов (УККМ), работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением. Способ изготовления герметичных изделий из УККМ включает изготовление заготовки из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР, и ее силицирование парожидкофазным методом путем нагрева, выдержки и охлаждения в парах кремния. Для силицирования берут заготовку с преобладающим размером пор не более 40 мкм, перед ее силицированием в поверхностные поры материала втирают шликерную композицию из порошка углерода или его смеси с соединениями, имеющими КЛТР, близкий к КЛТР компонентов материала заготовки, после чего формируют на поверхности изделия шликерное покрытие на основе указанной композиции. В композиции для формирования шликерного покрытия со стороны огневой поверхности используют порошки с размерами частиц, равными или превышающими размеры преобладающих пор материала заготовки не более чем в 2-2,5 раза. В шликерном покрытии для противоположной ей поверхности изделия используют порошки с размерами менее 5 мкм, в том числе наноразмерами. Массоперенос кремния в поры материала заготовки и шликерного покрытия осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1600°С при температуре паров кремния, превышающей температуру силицируемой заготовки. Техническим результатом изобретения является получение герметичных изделий из УККМ для использования при температурах выше температуры плавления кремния как в вакууме, так и при избыточном давлении. 3 пр., 1 табл.

Изобретение относится к области измерения характеристик материалов и может быть использовано для определения диэлектрической проницаемости изоляционных композитных и других материалов. Способ основан на измерении комплексного коэффициента отражения электромагнитных волн от отрезка линии передачи, на конце которого устанавливают калибровочные меры и испытуемый образец материала, с последующей обработкой материалов. На входе отрезка линии передачи с волновым сопротивлением Zв параллельно ему подключают резистивный элемент с сопротивлением R=(0,1-0,2)Zв, по результатам калибровочных измерений определяют параметры рассеяния цепи, соединяющей плоскость измерения коэффициента отражения с плоскостью подключения испытуемого участка линии с испытуемым образцом. Обрабатывая массив данных, находят диэлектрическую проницаемость и тангенс угла потерь испытуемого материала. Предложено устройство для осуществления способа. Технический результат заключается в повышении точности определения диэлектрической проницаемости в широком диапазоне частот. 2 н. и 3 з.п. ф-лы, 5 ил., 1 табл.
Изобретение относится к технологии получения углеродного материала

Изобретение относится к технологии получения наночастиц

 


Наверх