Патенты автора Аликин Павел Владимирович (RU)

Изобретение относится к производству плавильных тиглей и может быть использовано при работе с жаропрочными и химически активными сплавами. Огнеупорные шихтовые материалы смешивают с парафинсодержащей связкой и из полученной массы формуют тигель в металлической форме. В соответствии с заявленным способом заполнение формообразующей полости парафинсодержащей керамической массой производится в режиме вибропрессования в условиях радиального температурного градиента на фронте затвердевания парафинсодержащей керамической массы, направленного от внутренней формообразующей поверхности к наружной формообразующей поверхности. Далее производятся частичное удаление парафинсодержащего термопластического связующего в засыпке глиноземом и последующая пропитка тигля изнутри спиртовым раствором соли, содержащим ионы Al, Mg, Zr, Hf или РЗМ или их смеси. Изделия обжигают при температуре 1350-1550оС в течение 6-8 часов. Технический результат изобретения - повышение эксплуатационных характеристик тиглей, полученных более экономичным способом. 1 пр., 5 ил.

Изобретение относится к литейному производству, а именно к способу изготовления керамических форм, предназначенных для литья изделий с равноосной структурой, применяемых преимущественно в качестве лопаток газотурбинных двигателей (ГТД). Способ включает формирование на модельном блоке по меньшей мере одного слоя керамического покрытия с использованием суспензии, содержащей связующее на основе кремнийсодержащего вещества, модификатора на основе кобальтсодержащего вещества и огнеупорного наполнителя на основе оксида алюминия, формирование наружных слоев керамического покрытия с использованием суспензии на основе кремнийсодержащего связующего и огнеупорного наполнителя, и обсыпку блока после нанесения каждого слоя электрокорундом, при этом в качестве кремнийсодержащего связующего в суспензиях используют кремнезольное связующее на водной основе, а для формирования наружных слоев, начиная по крайней мере со второго слоя, используют суспензию следующего состава, мас. %: электрокорунд 37-50; кварц пылевидный 20-25; кварц плавленый 3-5; кремнезольное связующее на водной основе 20-40. Технический результат: увеличение живучести суспензии, снижение теплопроводности формы, увеличение ее податливости, повышение выхода годного равноосного литья длинномерных тонкостенных заготовок пустотелых лопаток ГТД. 1 табл.

Изобретение относится к литейному производству. Смесь содержит электрокорунд 81-89,7, легкоплавкий органический пластификатор на основе парафина с полиэтиленом 10-16 (сверх 100%), плавленую двуокись кремния 9,0-14,0, реакционно-активную анатазную модификацию диоксида титана 0,3-2 и карбид кремния 1-3. Обеспечивается улучшение качества отливок из жаропрочных сплавов за счет повышения прочности, термостойкости, геометрической точности и малой глубины взаимодействия со сплавами стержня. 2 з.п. ф-лы, 4 табл.

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены под углом до 15 градусов к горизонтали, что обеспечивает равномерную скорость заполнения и затвердевания отливок, расположенных вертикально. Верхние питатели 7 обеспечивают выход газов при заполнении и подпитку прибылей отливок горячим сплавом. Обеспечиваются равные условия заполнения и затвердевания каждой лопатки в блоке для получения плотных отливок. 4 ил.

Изобретение относится к области литейного производства. Литниковая система содержит центральный стояк с расширяющейся нижней частью, горизонтальные литниковые ходы, вертикальный литниковый ход, литниковые питатели отливки, центральный металлоприемник, горизонтальный кольцевой коллектор. Центральный металлоприемник выполнен в форме квадрата и расположен в нижней части литниковой системы. В углах центрального металлоприемника располагаются горизонтальные литниковые ходы, соединяющиеся с вертикальным литниковым ходом. Литниковая система содержит по крайней мере не менее 4 литниковых питателей отливки, расположенных в горизонтальной плоскости под углом от 90 до 0 градусов относительно вектора скорости центробежного вращения формы. Обеспечивается повышение качества пропускной способности металлоприемника и движение расплава без дополнительного сопротивления. 8 ил., 2 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе гамма-алюминида титана и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°C, в частности лопаток газотурбинных двигателей. Способ получения сплава на основе гамма-алюминида титана γ-TiAl, имеющего плотность при комнатной температуре не более 4,2 г/см3, температуру солидуса не менее 1450°C, количество фаз α2 и γ при 600-800°C не менее 20 мас.% и не менее 69 мас.% соответственно, суммарное количество этих фаз не менее 95 мас.%, а содержание ниобия в γ-фазе не менее 3 мас.%, заключается в том, что сплав на основе гамма-алюминида титана γ-TiAl, содержащий ниобий в количестве 1,3, или 1,5, или 1,6 ат.% и переходные металлы, выбранные из хрома в количестве 1,3 или 1,7 ат.% и циркония в количестве 1,0 ат.%, подвергают горячему изостатическому прессованию, совмещенному с термообработкой путем отжига при температуре 800°С и выдержки в течение 100 часов. Сплав обладает низкой плотностью и имеет стабильный фазовый состав при рабочих температурах. 1 з.п. ф-лы, 2 ил., 4 табл., 1 пр.
Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах. Способ получения сплава на основе титана с содержанием бора 0,002-0,008 мас.% включает проведение плавки в вакуумной дуговой гарнисажной печи с расходуемым электродом, не имеющей дополнительного вакуумного порта для введения модифицирующих добавок. Навеску модификатора B4C, завернутую в алюминиевую фольгу, закладывают в отверстие расходуемого электрода, которое высверливают от сплавляемого торца электрода на расстоянии, определяемом в зависимости от времени его расплавления. Получают сплав на основе титана с равноосной структурой и размером зерна менее 15 мкм. 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе магния содержит, масс.%: алюминий 7,5-9,0, цинк 0,2-0,8, марганец 0,15-0,5 и кальций 0,1-0,4, магний - остальное. Сплав характеризуется высокими механическими свойствами, а также температурой возгорания сплава - не ниже 650°С, температурой солидуса при равновесной кристаллизации - не менее 460°С, объемной долей выделений фазы Al2Ca - не выше 0,75%. 5 ил., 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей. Способ термообработки отливок из сплавов на основе гамма алюминида титана включает горячее изостатическое прессование, охлаждение до комнатной температуры и последующий нагрев при температуре ниже эвтектоидного превращения сплава. Горячее изостатическое прессование проводят при температуре выше эвтектоидного превращения сплава в фазовой области α+β+γ при следующем количестве фаз в сплаве, мас.%: бета-фаза (β) от 7 до 18, гамма-фаза (γ) от 5 до 16, альфа-фаза (α) - остальное. Снижается время термообработки, при этом сплавы имеют высокий уровень механических свойств. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении

 


Наверх