Литейный алюминиевый сплав



Литейный алюминиевый сплав
Литейный алюминиевый сплав

 


Владельцы патента RU 2485199:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Открытое акционерное общество "Уфимское моторостроительное производственное объединение" (RU)

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении. Сплав содержит, мас.%: кремний 6,6-7,4, магний 0,31-0,45, медь 0,18-0,32, марганец 0,15-0,45, железо 0,15-0,4, алюминий - остальное, при этом сплав имеет температуру ликвидуса в пределах от 608 до 620°С; температуру равновесного солидуса не ниже 552°С и структуру после термообработки по режиму Т66, содержащую количество включений кремниевой фазы в пределах от 6,4 до 7,5 об.%; железо в структуре сплава полностью связано в скелетообразные включения фазы Al15(Fe,Mn)3Si2, а магний полностью связан во вторичные выделения фазы Al5Cu2Mg8Si6. Техническим результатом является создание сплава, предназначенного для получения фасонных отливок ответственного назначения и обладающего высокими технологическими и эксплуатационными характеристиками. 1 з.п. ф-лы, 2 табл., 2 пр., 2 ил.

 

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении.

Отливки сложной формы обычно делают из силуминов. Отливки, предназначенные для наиболее ответственных деталей, как правило, используют после полной термической обработки типа Т6 (закалка и старение на максимальную прочность). Для достижения необходимого качества таких отливок от сплава требуется сочетание высокой технологичности (в частности горячеломкости и жидкотекучести) и достаточно хорошего уровня разных механических свойств (в частности, прочности, пластичности, вязкости разрушения и др.). Для реализации такого сочетания используют, как правило, так называемые безмедистые силумины (1 группа по ГОСТ 1583-93). При получении крупногабаритных отливок обычно используют методы литья в разовые формы (земляные, холодно твердеющие смеси и т.п.). Недостатком наиболее используемых силуминов (типа АК7ч и АК9ч) является их невысокая прочность. В частности, гарантируемое значение временного сопротивления на разрыв (σв) сплава АК7ч для литья в разовые формы составляет всего 225 МПа (ГОСТ 1583-93, термообработка Т6).

Наиболее прочным среди безмедистых силуминов является сплав АК8л (ГОСТ-1583-93), который содержит, мас.%:

Кремний 6,5-8,5
Магний 0,35-0,55
Бериллий 0,15-0,4
Алюминий и примеси остальное

Этот силумин имеет более высокую прочность по сравнению с АК7ч, в том числе для литья в разовые формы. Однако сплав АК8л имеет существенный недостаток, который заключается в том, что он содержит экологически вредную добавку бериллия.

Известен сплав, раскрытый в патенте US 6,773,666 (2004 г., Lin; Jen C. etc., Alcoa Inc). Данный сплав содержит кремний, магний и марганец при следующих концентрациях компонентов, мас.%:

Кремний 6-9
Магний 0,2-0,8
Марганец 0,1-1,2
Алюминий остальное

Из этого силумина можно получать отливки с хорошим сочетанием литейных и механических свойств за счет добавки марганца, который позволяет связать железо в скелетообразные включения и уменьшить его вредное влияние. В формуле патента особенно подчеркивается отсутствие бериллия и меди. Главный недостаток этого сплава заключается в жестком ограничении по предельно допустимой концентрации меди, что предъявляет высокие требования к чистоте шихтовых материалов и затрудняет использование вторичного сырья.

Наиболее близким сплавом к предложенному является сплав на основе алюминия, раскрытый в заявке на патент РФ 2010107316 (публ. 10.09.2011 г., бюл. 25, Н.А.Белов и др.). Данный сплав содержит кремний, магний, медь, марганец и железо в следующем количестве, мас.%:

Кремний 8,6-10,2
Медь 0,3-0,5
Магний 0,35-0,5
Марганец 0,1-0,45
Железо 0,2-0,5
Алюминий и примеси остальное

При этом должны выполняться следующие условия:

а) температура равновесного солидуса сплава должна быть не ниже 550°С; а температура ликвидуса не выше 605°С;

б) железо должно быть полностью связано в скелетообразные включения фазы Al15(Fe,Mn)3Si2,

в) магний должен быть полностью связан во вторичные выделения фазы Al5Cu2Mg8Si6(Q).

Первым недостатком данного сплава является его повышенная склонность к образованию сосредоточенной пористости (это связано с чрезмерно узким интервалом кристаллизации), что затрудняет получение качественных крупногабаритных отливок. Второй недостаток связан с повышенной объемной долей включений кремниевой фазы, что затрудняет нанесение на поверхность отливок специальных покрытий.

Задачей изобретения является создание нового алюминиевого сплава (безбериллиевого высокопрочного силумина), предназначенного для получения крупногабаритных фасонных отливок и удовлетворяющего заданным требованиям по комплексу технологических и эксплуатационных характеристик.

В частном исполнении данный сплав должен обеспечивать следующие механические свойства на растяжение: временное сопротивление на разрыв (σв) не менее 305 МПа, предел текучести (σ0,2) не менее 235 МПа, относительное удлинение (δ) - не менее 3%.

Поставленная задача решена тем, что литейный сплав на основе алюминия содержит кремний, магний, медь, марганец и железо в следующем количестве, мас.%:

Кремний 6,6-7,4
Магний 0,31-0,45
Медь 0,18-0,32
Марганец 0,15-0,45
Железо 0,15-0,4
Алюминий Остальное

При этом должны выполняться следующие условия:

а) температура ликвидуса сплава должна находиться в пределах от 608 до 620°С;

б) температура равновесного солидуса сплава должна быть не ниже 552°С;

в) количество включения кремниевой фазы в термообработанном состоянии должно находиться в пределах от 6,4 до 7,5 об.%;

г) железо должно быть полностью связано в скелетообразные включения фазы Al15(Fe,Mn)3Si2;

д) магний в термообработанном состоянии должен быть полностью связан во вторичные выделения фазы Al5Cu2Mg8Si6 (Q).

Указанные параметры следует рассчитывать с использованием программы Thermo-Calc (база данных TTAL5 или выше).

В частном исполнении данный сплав позволяет получать крупногабаритные отливки сложной формы, полученные литьем в разовые формы, в которых обеспечиваются следующие механические свойства на растяжение (после термообработки по режиму Т6): временное сопротивление на разрыв (σв) не менее 305 МПа, предел текучести (σ0,2) не менее 235 МПа, относительное удлинение (δ) - не менее 3%.

Сущность изобретения состоит в следующем.

Концентрация кремния в заявленных пределах обеспечивает необходимые значения температуры ликвидуса и объемной доли включений кремниевой фазы, что, в свою очередь, обеспечивает требуемое сочетание технологических и эксплуатационных характеристик.

Медь и магний в заявленных пределах находятся в алюминиевой матрице в виде вторичных выделений фазы Q (Al5Cu2Mg8Si6), что вносит основной вклад в прочность сплава. При выбранных концентрациях меди и магния достигается сочетание высокой температуры солидуса, высоких литейных свойства сплава.

Марганец и железо в заявленных пределах полностью входят в эвтектические включения фазы Al15(FeMn)3Si2, которые кристаллизуются преимущественно в составе тройной эвтектики (Al)+(Si)+Al15(FeMn)3Si2. Такой характер кристаллизации оказывает благоприятное влияние на литую структуру (а именно на морфологию кремниевой и железистой фаз), что способствует формированию глобулярных включений кремниевой фазы при нагреве под закалку.

ПРИМЕР 1

Были приготовлены 6 сплавов, составы которых указаны в таблице 1. Сплавы готовили в электрической печи сопротивления в графитошамотных тиглях в условиях учебно-производственного участка НИТУ «МИСиС» на основе отходов силуминов различных марок. Из экспериментальных сплавов были получены отдельно отлитые образцы. Отливки термообрабатывали по режиму Т6 (нагрев под закалку при 540±3°С, закалка в холодной воде и старение при 175±3°С). Температуры ликвидуса и равновесного солидуса определяли методом дифференциального термического анализа и уточняли расчетом по программе Thermo-Calc (база данных TTAL5). Объемные доли кремниевой фазы и вторичных выделений фаз, содержащихся в алюминиевой матрице (таблица 1), рассчитывали с помощью программы Thermo-Calc по методике, описанной в [Белов Н.А., Савченко С. В., Хван А.В. Фазовый состав и структура силуминов. - М.: МИСиС, 2007, 284 с.].

Таблица 1
Составы экспериментальных сплавов и характерные температуры
Концентрации, % по массе TL1, °C TS2, C
Si Mg Cu Mn Fe Al
1 5,5 0,6 0,1 0,05 0,7 ост. 624 558
2 6,6 0,45 0,32 0,15 0,15 ост. 616 558
3 7,0 0,37 0,25 0,30 0,28 ост. 614 562
4 7,4 0,31 0,18 0,45 0,4 ост. 612 564
5 8,5 0,1 0,6 0,7 0,05 ост. 603 565
6 9,5 0,4 0,4 0,3 0,3 ост. 596 558
1 - температура ликвидуса (расчет), 2 - температура равновесного солидуса (расчет)

Из таблиц 1-2 видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемые значения заданных параметров. В сплаве 1 температура ликвидуса слишком высокая, а в сплавах 5 и 6, наоборот, слишком низкая. Кроме того, в сплаве 1 имеется нежелательная фаза Al5FeSi, а в сплавах 5 и 6 количество включений кремниевой фазы (Q1) слишком велико. Алюминиевая матрица сплава 1 содержит фазу Mg2Si, в которую связана часть магния.

Таблица 2
Параметры структуры экспериментальных сплавов1 в термообработанном состоянии
Q12, об.% Наличие Fe-содержащих фаз Наличие вторичных выделений в алюминиевой матрице
Al15(FeMn)3Si2 Al5FeSi Al5Cu2Mg8Si6 Mg2Si
1 4,62 + + + +
2 6,57 + - + -
3 6,99 + - + -
4 7,36 + - + -
5 8,61 + - + -
6 9,74 + - + -
1 - составы см. в таблице 1, 2 - объемная доля эвтектических включений кремниевой фазы (расчет)

ПРИМЕР 2

Из заявляемого сплава состава №3 (см. таблицу 1) в заводских условиях ОАО «УМПО» были залиты 10 шт. серийных отливок детали «Корпус редуктора» (Фигура 1), имеющей габаритные размеры 930×310×150 мм и преобладающую толщину стенки 4-5 мм, методом гравитационного литья в песчаную форму, изготовленную на основе фуранового связующего (ХТС) послойной печатью на установке S-15 (ProMetal) (Фигура 2).

Все отливки имели удовлетворительное качество: в них отсутствовали дефекты литейного происхождения, а механические свойства вырезанных образцов имели следующие значения: σв=315 МПа, σ0,2=250 МПа, δ=3,8%.

1. Литейный сплав на основе алюминия, содержащий кремний, магний, медь марганец и железо, отличающийся тем, что он содержит компоненты в следующем соотношении, мас.%:

Кремний 6,6-7,4
Магний 0,31-0,45
Медь 0,18-0,32
Марганец 0,15-0,45
Железо 0,15-0,4
Алюминий Остальное

при этом сплав имеет температуру ликвидуса от 608 до 620°С, температуру равновесного солидуса не ниже 552°С и структуру после термообработки по режиму Т6, содержащую количество включений кремниевой фазы от 6,4 до 7,5 об.%, причем железо в структуре сплава полностью связано в скелетообразные включения фазы Al15(Fe,Mn)3Si2, а магний полностью связан во вторичные выделения фазы Al5Cu2Mg8Si6.

2. Сплав по п.1, отличающийся тем, что выполнен в виде крупногабаритных отливок сложной формы, полученных литьем в разовые формы, при этом литой сплав имеет временное сопротивление на разрыв (σв) не менее 305 МПа, предел текучести (σ0,2) не менее 235 МПа, относительное удлинение (δ) не менее 3%.



 

Похожие патенты:
Изобретение относится к алюминиевым сплавам, в частности к тем, из которых получают высокопрочный алюминиевый полуфабрикат, а также к способу получения таких алюминиевых полуфабрикатов.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др.

Изобретение относится к металлургии, в частности к протекторным сплавам на основе алюминия, и может быть использовано при производстве протекторов для защиты от коррозии морских сооружений и судов из алюминиевых сплавов.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 100-150°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др.

Изобретение относится к алюминиевоцинкомагниевым сплавам и к продуктам, выполненным из таких сплавов, которые могут быть использованы для изготовления литейных форм для производимых литьем под давлением пластмасс.
Изобретение относится к металлургии легких сплавов, в частности к сверхпрочным деформируемым термически упрочняемым алюминиевым сплавам системы Al-Zn-Mg-Cu, которые предназначены для изготовления деформированных полуфабрикатов в виде прессованных и катаных труб, штампованных крышек, используемых в виде деталей газовых центрифуг.

Изобретение относится к алюминиевым сплавам, в частности к сплавам алюминия серии 7000, подходящим для изготовления элементов конструкции коммерческих самолетов. .
Изобретение относится к способу изготовления слоистой плиты на основе алюминия для противопульной сварной брони. .
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением

Изобретение относится к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах. Сплав содержит, в мас.%: цинк 6,6-7,4, магний 3,2-4,0, медь 0,8-1,4, скандий 0,12-0,30, цирконий 0,06-0,20, бериллий 0,0001-0,005, кобальт 0,05-0,15, никель 0,35-0,65, железо 0,25-0,65, алюминий - остальное. Техническим результатом изобретения является повышение прочности при сохранении пластичности и пониженной плотности сплава. 3 табл., 1 пр.
Группа изобретений относится к изделиям из дисперсионно-твердеющего алюминиевого сплава. Изделие выполнено толщиной от 2 дюймов (50 мм) до 12 дюймов (305 мм) из сплава следующего химического состава, вес.%: Zn - от 3 до 11, Mg - от 1 до 3, Cu - от 0,9 до 3, Ge - от 0,03 до 0,4, Si - максимум 0,5, Fe -максимум 0,5, Ti - максимум 0,3, остальное - алюминий и обычные и/или неизбежные элементы и примеси. Способ изготовления изделия включает отливку заготовки, подогрев и/или гомогенизацию отлитой заготовки, горячую обработку заготовки, необязательную холодную обработку, термообработку на твердый раствор (ТТР) подвергнутой горячей обработке и необязательно холодной обработке заготовки, охлаждение ТТР заготовки, необязательное растяжение или сжатие охлажденной ТТР заготовки либо иную холодную обработку охлажденной ТТР заготовки для снятия напряжений, старение охлажденной и необязательно подвергнутой растяжению или сжатию либо иной холодной обработке ТТР заготовки для достижения нужного состояния. Обеспечивается получение изделия с высокой прочностью при высокой вязкости и пониженной чувствительности к закалке. 2 н. и 18 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к активному материалу отрицательного электрода для электрического устройства, содержащему сплав с формулой состава SixZnyAlz, где каждый из х, y и z представляет массовое процентное содержание, удовлетворяющее: (1) x+y+z=100, (2) 26≤х≤47, (3) 18≤y≤44 и (4) 22≤z≤46. Также изобретение относится к электрическому устройству и отрицательному электроду для него. Технический результат заключается в том, чтобы предоставить активный материал отрицательного электрода для электрического устройства, такого как литий-ионная аккумуляторная батарея, проявляющего хорошо сбалансированные свойства сохранения высокой циклируемости и достижения высокой начальной емкости. 3 н. и 1 з. п. ф-лы, 2 табл., 10 ил., 2 пр.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15; цирконий 0,08-0,12; бериллий 0,0005-0,004; церий 0,01-0,15; титан 0,02-0,08; кремний 0,01-0,15; железо 0,01-0,15; водород 0,05-0,35 см3/100 г металла; неизбежные примеси из группы Mn, Cr, V, Mo, Li, Ag, K, Na, O в суммарном количестве не более 0,10; алюминий - остальное, при соотношении между содержанием магния и цинка от 0,53 до 0,57. Техническим результатом изобретения является повышение уровня прочности сплавов системы Al-Zn-Mg-Cu с пониженной плотностью и разовых изделий, выполненных из них. 2 н.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к области металлургии, в частности к способам производства труб осесимметричных штамповок диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием. Способ производства осесимметричных штамповок типа крышка диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием, включает приготовление алюминиевого расплава, содержащего скандий и цирконий, его перегрев до 765-780°С, отливку круглых слитков малого диаметра при 710-740°С, их гомогенизацию при 400-440°С в течение 4-10 часов, штамповку при 380-440°С, закалку с температуры 465-480°С с равномерным охлаждением всей поверхности штамповок со скоростью, обеспечивающей сохранение после закалки полностью нерекристаллизованной структуры штамповки, и искусственное старение. Штамповки имеют меньший уровень остаточных закалочных напряжений, что обеспечивает стабильность геометрических параметров деталей за счет устранения овализации при обточке штамповок на тонкостенные детали. 2 табл., 1 пр.

Изобретение относится к конструкционным элементам из алюминиевого сплава, в частности для аэрокосмической промышленности. Плита выполнена толщиной по меньшей мере 4 дюйма из алюминиевого сплава, который содержит: от 6,4 до 8,5 мас.% Zn, от 1,4 до 1,9 мас.% Mg, от 1,4 до 1,85 мас.% Сu, от 0,05 до 0,15 Zr, от 0,01 до 0,06 мас.% Ti, до 0,15 мас.% Fe, до 0,12 мас.% Si, остальное алюминий, сопутствующие элементы и примеси. Обеспечивается улучшенное сочетание прочности и стойкости к растрескиванию, а также обеспечивается стойкость к растрескиванию в результате коррозии под нагрузкой, особенно в условиях морской атмосферы. 9 з.п. ф-лы, 14 ил., 14 табл., 3 пр.
Изобретение относится к металлургии алюминиевых полуфабрикатов, а именно к металлургии свариваемых алюминиевых сплавов системы алюминий - цинк - магний, и может найти применение при изготовлении гомогенных или слоистых броневых плит для броненесущих и бронекорпусных объектов. Cвариваемый алюминиевый сплав для брони содержит, мас. %: цинк 3,8-5,3; магний 1,2-2,0; марганец 0,91-1,3; хром 0,12-0,40; цирконий 0,07-0,15; медь 0,10-0,30; железо ≤0,35; кремний ≤0,35; ванадий 0,01-0,12; бор 0,01-0,12; никель ≤0,05; кальций ≤0,05; алюминий - остальное, при суммарном содержании цинка и магния 5,0-7,3 мас. % и отношении содержания цинка к содержанию магния 1,90-4,58. Техническим результатом является создание свариваемого алюминиевого сплава для брони, который обеспечивает при высокой коррозионной стойкости брони повышение уровня безопасных напряжений - σКР (сопротивление коррозионному растрескиванию), повышение сопротивления к образованию тыльных отколов. 1 пр.
Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций. Сплав содержит, мас. %: цинк - 4,0-6,0, марганец - 0,1-0,3, магний - 0,5-2,5, титан - 0,01-0,1, кальций - 0,005-0,01, алюминий - остальное при следующем ограничении содержания примесей: железо - не более 0,1, медь - не более 0,01, кремний - не более 0,1, водород - не более 0,35 см3/100г металла. Технический результат заключается в обеспечении высоких электрохимических характеристик и исключении опасности пассивации поверхности литых протекторов, изготовленных из предлагаемого сплава, а также повышении предела прочности на растяжение сплава. 1 табл.
Наверх