Патенты автора Печерская Римма Михайловна (RU)

Изобретение относится к измерительной технике. Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)20%(SnO2)80% путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту и двухводный хлорид олова (SnCl2·2H2O) в определенных соотношениях. Изобретение обеспечивает повышение чувствительности датчика вакуума. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. В способе изготовления датчика вакуума с наноструктурой получают гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x. Массовую долю компонента х определяют (задают) в интервале 50%≤х≤90% путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом. Золь приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O). Изобретение обеспечивает повышение чувствительности датчика вакуума. 2 н.п. ф-лы, 10 ил.

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц. Записывают инфракрасные спектры эталонных образцов, идентифицируют характеристические пики поглощения. Записывают инфракрасные спектры эталонных образцов во время процесса коагуляции, строят экспериментальную зависимость коэффициента пропускания инфракрасного излучения от времени коагуляции. Записывают инфракрасные спектры исследуемых образцов и определяют концентрации С и размер наночастиц d по соотношениям C ( T ) = C 0 1 + C 0 τ ( T ) K , d ( T ) = α χ ln ( 1 + K ⋅ C 0 ⋅ τ ( T ) ) ln ( ξ ) , C 0 = ρ к V к N A M к V з о л я , K = 4 k T 3 η ψ , где C0 - начальная концентрация наночастиц в золе; K - константа коагуляции, определяемая составом золя; ρк - плотность компонента золя, образующего наночастицы; Vк - объем компонента золя, образующего наночастицы; NA - число Авогадро; Мк - молярная масса компонента золя, образующего наночастицы; Vзоля - объем золя; k - постоянная Больцмана; T=29S K - температура; η - динамическая вязкость раствора; ψ=10-9 - параметр, характеризующий эффективную вероятность соударения наночастиц друг с другом; α - размер молекулы, образующей наночастицу; χ=3 - коэффициент роста диаметра наночастицы в процессе коагуляции; ξ=13 - константа, связанная с фрактальностью наночастицы; τ(Т) - аппроксимация экспериментальной зависимости коэффициента пропускания ИК-излучения через золь от времени. Техническим результатом является создание способа определения концентрации и среднего размера наночастиц в золе, претерпевающем коагуляцию с помощью ИК-спектроскопии. 14 ил.

Изобретение относится к датчикам вакуума для измерения давления разреженного газа в вакуумных установках различного назначения

 


Наверх