Патенты автора Лапин Петр Георгиевич (RU)

Изобретение относится к области получения изделий из высокотемпературных конструкционных материалов на основе нитрида кремния, которые могут использоваться в двигателестроении, машиностроении и других высокотехнологичных отраслях промышленности, в частности при изготовлении сложнопрофильных деталей, требующих механической обработки, например керамических шариков подшипников. Технический результат изобретения - получение керамики с пористостью не более 0,1%, прочностью не менее 800 МПа и упрощение технологии изготовления сложнопрофильных изделий. Шихта на основе нитрида кремния содержит 10-15 мас.% спекающих добавок и технологическую связку, при этом спекающие добавки содержат фракцию нанодисперсных порошков в количестве 40-60%. Нанодисперсные порошки с удельной поверхностью 30-50 м2/г получены методами гетерофазного осаждения или соосаждения. Способ изготовления изделий из указанной шихты на основе нитрида кремния включает помол порошков нитрида кремния и порошков спекающих добавок в планетарной мельнице, ведение технологической связки (ПВС), прессование заготовки и спекание под давлением азота. Предварительно проводят механическую обработку прессованной заготовки твердосплавным инструментом, затем удаляют технологическую связку на воздухе при температурах 500-1100°C и спекают в вакууме, нагревая до температуры 1600°C, далее в среде азота при давлении 3-4 МПа и температуре 1800-1850°C. Окончательную механическую обработку проводят суспензиями на основе сверхтвердых абразивных материалов. 2 н. и 2 з.п. ф-лы, 2 пр., 4 ил.

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Сплав содержит, мас. %: магний 5,7-6,3, титан 0,01-0,03, бериллий 0,0001-0,005, цирконий 0,05-0,12, скандий 0,18-0,26, марганец 0,2-0,55, железо 0,05-0,3, кремний 0,03-0,2, неизбежные примеси: медь не более 0,1, цинк не более 0,1, остальные примеси каждой не более 0,05 и в сумме не более 0,15; алюминий - остальное, при содержании водорода в сплаве 0,1-0,35 см3/100 г металла и величине отношения содержания железа к содержанию кремния, равной или большей единицы. Техническим результатом изобретения является повышение прочностных характеристик сплава. 2 табл., 1 пр.

Изобретение относится к керамическому материаловедению, в частности к получению композиционного материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений. Техническим результатом изобретения является повышение окислительной и термической стойкости. Композиционный керамический материал для высокотемпературного применения в окислительных средах содержит оксид алюминия, оксид магния и карбид кремния при следующем соотношении компонентов, мас.%: Al2O3 - 20-50; MgO - 5-10; SiC - остальное. Причем оксид алюминия и оксид магния имеют дисперсность 120-400 нм, а карбид кремния - 0,1-5 мкм. 2 н. и 4 з.п. ф-лы, 5 пр., 1 табл.
Изобретение относится к керамическому материаловедению, в частности к получению материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью, термической и окислительной стойкостью, стойкостью к термоудару при градиенте температуры до 2000 К в условиях воздействия высокоскоростного окислительного потока. Технический результат заключается в возможности использования указанного керамического материала при температуре Т=1800°С при комплексном воздействии механических и тепловых нагрузок в условиях окислительных сред. Это достигается тем, что композиционный керамический материал для высокотемпературного применения в окислительных средах получают из шихты, содержащей SiC, Y2O3, Al2O3 и/или Al2O3·MgO, при следующем соотношении компонентов, (% мас.): SiC 76-80, Y2O3 4-5, Al2O3 и/или Al2O3·MgO - остальное. Получаемый керамический материал имеет следующие характеристики: плотность 99% от теоретической, прочность при изгибе 400±25 МПа, прочность при сжатии 1200±40 МПа, твердость по Виккерсу 25-27 ГПа, K1c - 8,5-10,0 МПа·м1/2, окислительная стойкость ≤0,015 мг/см2сек, рабочая температура 1800°С. 5 пр., 1 табл.

 


Наверх