Патенты автора Баранов Михаил Александрович (RU)

Изобретение относится к системам мультиплексного анализа и детектирования биомаркеров в водных пробах методом проточной цитометрии для использования в медицине и биологии. Люминесцентный сенсор для мультиплексного детектирования аналитов в водной среде методом проточной цитометрии с определением времен затухания квантовых точек включает полупроводниковые нанокристаллы, внедренные в чередующиеся полимерные слои полиэлектролитов полиаллиламингидрохлорида (ПААГ) и поли(4-стиролсульфоната натрия) (ПСС), при этом в качестве внедренных в полимерные слои полиэлектролитов на поверхности полистирольных микросфер используются нанокристаллы тройного состава AgInS2-ZnS. Техническим результатом является упрощение технологии изготовления сенсорной платформы и исключение использования токсичных веществ. 2 н.п. ф-лы.

Изобретение относится к технологи получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита, допированного ионами кадмия CsСdxPb1-xBr3, (0<x<1), которые могут быть использованы как компоненты оптоэлектронных приборов, работающих в синем диапазоне длин волн света. Способ получения сверхрешеток из нанокристаллов свинцово-галогенидного перовскита включает добавление октадецена к порошку безводного карбоната цезия Cs2CO3, выдерживание полученной смеси при температуре 100°C в течение 30 мин, добавление олеиновой кислоты и нагревание до 180°C с образованием олеата цезия, охлаждение полученного раствора до 25°C за 30 мин, введение октадецена в бромид свинца PbBr2, создание вакуума с последующим перемешиванием при 100°C в течение 30 мин, введение в эту смесь олеиламина и олеиновой кислоты и ее нагрев до 180°C, смешивание полученных растворов олеата цезия и бромида свинца с образованием коллоидного раствора нанокристаллов свинцово-галогенидного перовскита в октадецене, его охлаждение до 15°C на ледяной бане, очистку от октадецена центрифугированием, редиспергирование осадка нанокристаллов, повторное центрифугирование коллоидного раствора и удаление надосадочного раствора, редиспергирование осадка нанокристаллов в толуоле с образованием коллоидного раствора нанокристаллов свинцово-галогенидного перовскита в толуоле, который прокапывают на предварительно очищенную кремниевую подложку с образованием сверхрешеток из нанокристаллов свинцово-галогенидного перовскита при испарении толуола, при этом перед очисткой в коллоидный раствор нанокристаллов свинцово-галогенидного перовскита CsPbBr3 в октадецене дополнительно добавляют октадецен, центрифугирование во время очистки осуществляют с ускорением 1000g в течение 5-10 мин, далее удаляют надосадочный раствор, редиспергирование осадка нанокристаллов проводят в октадецене, к нему добавляют заранее приготовленную смесь, полученную перемешиванием четырехводного бромида кадмия CdBr2•4H2O с октадеценом при температуре 130°C со скоростью 1000 об/мин в перчаточном боксе, заполненном атмосферой азота 99,999%, в течение 40 мин и добавлением олеиламина и олеиновой кислоты с нагревом до 180°C и охлаждением до 25°C за 30 мин, полученный состав вакуумируют и перемешивают со скоростью 1000 об/мин при комнатной температуре в течение 10 мин, нагревают до 150°C и выдерживают в течение 10 мин, охлаждают до 25°C за 30 с, в результате чего получают коллоидный раствор нанокристаллов состава CsСdxPb1-xBr3, (0<x<1) в октадецене, повторное центрифугирование проводят с ускорением 1000g в течение 5 мин, а после удаления надосадочного раствора в результате редиспергирования осадка нанокристаллов в толуоле получают концентрированный коллоидный раствор нанокристаллов свинцово-галогенидного перовскита CsСdxPb1-xBr3 в толуоле, раствор после редиспергирования вновь центрифугируют в толуоле с ускорением 1000g в течение 5 мин и отбирают надосадочный коллоидный раствор нанокристаллов состава CsСdxPb1-xBr3 в толуоле, который прокапывают на упомянутую кремниевую подложку, предварительно очищенную в атмосфере кислородной плазмы под давлением 0,3-0,4 Мбар с мощностью генератора 50-100 Вт в течение 1 мин. Добавление кадмия в структуру нанокристаллов свинцово-галогенидного перовскита позволяет получать сверхрешетки из нанокристаллов CsCdxPb1-xBr3, (0<x<1), обеспечивающих фотолюминесценцию синего цвета. Уменьшение количества реагентов на этапе очистки и замена кислотной обработки подложек на плазменную обеспечивает оптимизацию процесса изготовления и ее упрощения. 1 пр., 3 ил.

Изобретение относится к области измерительной техники и касается люминесцентного сенсора концентрации ионов тяжёлых металлов в воде. Сенсор выполнен на основе раствора квантовых точек тройного состава ZnS-AgInS2. В водный раствор введены гибридные комплексы на основе микросфер карбоната кальция (СаСО3), легированные магнитными наночастицами Fe3O4, а квантовые точки тройного состава покрыты полиэлектролитной оболочкой, состоящей из чередующихся слоев полиаллиламин гидрохлорида (ПААГ) и поли(4-стиролсульфоната натрия) (ПСС). Технический результат заключается в снижении токсичности сенсора, повышении чувствительности и точности определения концентрации ионов тяжелых металлов, увеличении срока эксплуатации сенсора. 2 н.п. ф-лы, 4 ил.

Защитный элемент для идентификации подлинности изделий относится к области защиты от подделки и проверки подлинности ценных документов, который может быть использован для скрытой маркировки различных объектов с целью предотвращения неавторизованного производства этих объектов и упрощения процесса верификации их подлинности. Защитный элемент содержит стопку полимерных слоев, склеенных между собой, каждый из которых содержит определенный вид полупроводниковых квантовых стержней, люминесцирующих в разных спектральных областях и ориентированных в направлениях, ортогональных друг другу. Таким образом решаются задачи повышения надежности защитного элемента и увеличения срока его эксплуатации. 4 ил.

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO2, полупроводниковые квантовые точки и органический краситель, и заключается в том, что для уменьшения толщины слоя КТ, адсорбированных на поверхность TiO2, вводится технологический этап предварительного удаления избыточного количества молекул солюбилизатора полупроводниковых квантовых точек из раствора и частично с поверхности квантовых точек. Это позволяет избежать самообразования дендритных структур на поверхности мезопористого TiO2 и приводит к формированию тонких слоев квантовых точек на поверхности мезопористого TiO2, обеспечивающих условия для высокоэффективного переноса заряда. Соответственно увеличивается эффективность преобразования энергии в фотовольтаической ячейке. 6 ил.

Изобретение относится к средствам маркировки изделий. Технический результат заключается в повышении степени защиты маркировки. Способ основан на внедрении квантовых наностержней в трековые поры полимерных мембран и заключается в создании фотоиндуцированной анизотропии люминесценции в слое наностержней. Для этого в линейно-поляризованном свете осуществляется селективное воздействие света определенной длины волны на часть наностержней, пространственная ориентация которых в образце совпадает с направлением электрического вектора света, воздействующего на образец. Таким образом решается задача упрощения способа изготовления, расширения технологического подхода и снижения требований к точности контроля параметров скрытых меток с поляризационным контрастом в процессе их изготовления. 6 ил.

Изобретение предназначено для обнаружения и определения концентрации паров аммиака в атмосфере или пробе воздуха. Сенсор включает в себя полупроводниковые нанокристаллы (квантовые точки), внедренные в пристеночный слой трековых пор полиэтилентерефталатных мембран, при этом сами поры остаются пустыми. В присутствии в пробе воздуха паров аммиака молекулы аммиака связываются с поверхностью квантовых точек, в результате чего интенсивность люминесценции квантовых точек уменьшается. Изобретение решает задачи повышения чувствительности, точности определения концентрации паров аммиака, срока эксплуатации и упрощения изготовления сенсора. 5 ил., 1 пр.

Изобретение может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина содержит диэлектрическую подложку, на которой расположены электроды и чувствительный слой, меняющий фотопроводимость в результате адсорбции паров гидразина, при этом чувствительный слой состоит из структуры графен-полупроводниковые квантовые точки, фотопроводимость которой уменьшается при адсорбции молекул гидразина на поверхность квантовых точек пропорционально концентрации паров гидразина в пробе. В присутствии в пробе воздуха паров гидразина, молекулы гидразина адсорбируются на поверхность квантовых точек, уменьшая интенсивность люминесценции квантовых точек, в результате чего проводимость графена уменьшается пропорционально концентрации паров гидразина в анализируемой пробе. Изобретение обеспечивает повышение чувствительности, уменьшение инерционности определения и упрощение изготовления сенсора. 1 пр., 7 ил.

Изобретение относится к созданию структур на основе полупроводниковых нанокристаллов и органических молекул, которые могут быть использованы в качестве микрофлюидных элементов в оптоэлектронных устройствах. Способ предусматривает внедрение нанокристаллов и органических молекул в трековые поры мембран. Нанокристаллы внедряют в пристеночный слой трековых пор, а органические молекулы связывают с модифицированными или немодифицированными карбоксильными группами на внутренней поверхности трековых пор мембран. Либо молекулы связывают в комплекс с нанокристаллами, внедренными в трековые мембраны в результате последовательного пропитывания мембран растворами нанокристаллов и органических молекул при нормальных условиях. Технический результат заключается в упрощении способа, повышении пропускной способности мембран с внедренными структурами и в увеличении количества структур в полимерных трековых мембранах. 7 ил., 2 пр.

 


Наверх