Патенты автора Любимова Людмила Леонидовна (RU)

Изобретение относится к способам испытания на прочность и герметичность элементов котельного оборудования и трубопроводов. Сущность: котельное оборудование и трубопроводы наполняют жидкостью, нагнетая давление до величины пробного давления. После достижения величины пробного давления котельное оборудование и трубопроводы выдерживают при этом давлении не менее 15 минут. Затем давление снижают, проводят визуальный осмотр котельного оборудования и трубопроводов. Если отсутствуют течи жидкости и разрывы металла, то делают вывод, что котельное оборудование и трубопроводы пригодны для эксплуатации. Технический результат: повышение надежности работы котельного оборудования и трубопроводов. 2 ил., 2 табл.

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции. Сущность: осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения Kс.п.. Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия. Технический результат: возможность установления состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах. 2 табл., 2 ил.

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину температуры эксплуатации. Подготовленные образцы подвергают двум процедурам термоциклирования, на основе которых вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования. Такой способ позволит сократить время определения оптимальной температуры эксплуатации котельного оборудования. 4 ил.

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования. Для обеспечения совместимости конструкционных сталей плакированного изделия способ включает подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σв. 2 ил., 4 табл., 3 пр.

Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в эксплуатации. По относительным изменениям параметра элементарной ячейки в образце, отработавшем в ресурсе в котле, определяют скорость и продолжительность первого участка неустановившейся ползучести на кривой, аналогичной классической кривой ползучести. Первый эталон подвергается испытаниям методом термоциклирования и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки при термических нагрузках. Второй эталон подвергается «холодному» циклическому деформированию, и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки от внешних давлений. Путем суммирования результатов термоциклирования и «холодного» циклического деформирования устанавливается максимальное относительное изменение параметра элементарной кристаллической решетки на участке ускоренной ползучести, достигаемое при исчерпании изделием ресурса работоспособности за время, рассчитываемое на основании фундаментального кристаллохимического критерия В.М. Гольдшмидта, равного 15% и выбранного за ресурс пластичности матрицы. Ресурсы изделия определяются на основе экспериментальной зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести. Технический результат: повышение точности определения остаточного ресурса трубных изделий энергетического оборудования. 1 табл., 6 ил.

Использование: для определения оптимальной температуры пассивации трубных элементов теплоэнергетического оборудования. Сущность изобретения заключается в том, что подготавливают эталон, подвергают его термоциклированию, при проведении которого методом рентгеновской дифракции определяют внутренние структурные напряжения I рода и II рода, строят зависимости внутренних структурных напряжений I и II рода от температуры термоциклирования, по которым определяют область одновременной релаксации внутренних структурных напряжений и соответствующую ей температуру пассивации. Технический результат: обеспечение возможности определения оптимальной температуры пассивации для различных видов сталей на основе оценок напряженного состояния теплонапряженных поверхностей. 2 н.п. ф-лы, 7 ил., 3 табл.

Использование: для неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов. Сущность заключается в том, что подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей аналогичный состав и способ изготовления, осуществляют рентгеносъемку эталона в режиме термоциклирования в цикле «нагрев - охлаждение до комнатной температуры», строят на ее основе зависимость отношений интегральных интенсивностей, полученных при комнатной температуре для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла, производят рентгеносъемку образца трубного элемента при комнатной температуре, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий, сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей. Технический результат: обеспечение возможности реализации способа определения температурных условий эксплуатации трубных элементов котлов, распространяющегося на все виды стали, независимо от водного режима работы котла, без разрушения поверхности образца. 1 ил., 4 табл.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх