Патенты автора Сухотин Виталий Владимирович (RU)

Изобретение относится к области радиотехники, в частности к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и предстартовых испытаниях КА. Контрольно-проверочная аппаратура КА наряду с известным содержанием схемы включает векторный анализатор принимаемых сигналов, векторный генератор передаваемых сигналов, цифровой сигнальный процессор и рубидиевый стандарт частоты. Такое решение позволяет проводить комплексную проверку функционирования систем бортового ретрансляционного комплекса КА. При этом обеспечивается контроль работоспособности и измерение характеристик приемного и передающего трактов бортового ретрансляционного комплекса КА. 1 ил.

Изобретение относится к радиотехнике, в частности к устройствам измерения сдвига фаз между сигналами несинхронизированных по частоте генераторов близких частот для радионавигационных и радиогеодезических приложений. Сущность заявленного технического решения заключается в том, что в цифровой фазометр введены дополнительно такие элементы как : элемента И, блока измерения длительности периода измерительного сигнала, блока измерения длительности периода опорного сигнала, блока вычитания цифровых эквивалентов длительностей периодов сигналов, блока сравнения разности длительностей периодов с порогом, RS-триггера. Данные элементы, а также соответствующие связи между ними позволяют проводить измерение разности фаз между гармоническими несинхронизированными по частоте сигналами близких частот. Техническим результатом при реализации заявленного решения является возможность измерения разности фаз между синусоидальными сигналами высокостабильных несинхронизированных генераторов близких частот при допущении, что погрешность измерения, вызванная неравенством частот, не окажет существенного влияния на результирующую погрешность измерения. 2 ил.

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой. Для обеспечения технического результата в бортовую аппаратуру командно-телеметрической системы КА введены узел вычитания, формирователь компенсирующего сигнала, блок определения модуля, блок синхронизации, блок оперативной памяти и блок формирователя командного сигнала. В случае появления помехи принятая команда, искаженная помехой, также записывается в блок оперативной памяти, в блоке определения модуля, в паузе командного сигнала, выявляется наличие сигнала помехи по ненулевому значению напряжения на выходе блока определения модуля. В результате этого с выхода блока определения модуля поступает сигнал, по которому запрещается передача искаженного командного сигнала, записанного в блок оперативной памяти, в дешифратор команд. 4 ил.

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а также анализатор спектра принимаемого радиосигнала, приемник с приемной антенной, адресный коммутатор цифровых потоков, управляемые аттенюатор и аттенюатор-делитель, передатчик с передающей антенной. Данные элементы, а также соответствующие связи между ними позволяют проводить комплексную проверку функционирования систем КА, в том числе ВЧ-трактов командной и телеметрической радиолиний. Технический результат изобретения заключается в расширении функциональных возможностей контрольно-проверочной аппаратуры КА за счет обеспечения контроля работоспособности и измерения характеристик приемного тракта командной радиолинии и передающего тракта телеметрической радиолинии КА. 1 ил.

Изобретение относится к области автоматизированных систем управления подвижными объектами, в частности космическими аппаратами (КА), и, более конкретно, к способам защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны нелегитимных пользователей - злоумышленников. Технический результат заключается в возможности блокирования команд, полученных от нелегитимного пользователя, в том числе и в защите от несанкционированного вмешательства в работу командно-измерительной системы космического аппарата. Для этого координаты источника сигналов оцениваются и сравниваются с хранимыми в бортовой памяти координатами наземного комплекса управления. При близком совпадении координат принимается решение о легитимности источника сигналов. А при несовпадении координат блокируют команды, полученные от нелегитимного источника сигналов. Таким образом, решается задача защиты командной линии космического аппарата и, в частности, исключения несанкционированного доступа нелегитимных пользователей к командно-измерительной системе КА. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций. Способ контроля параметров бетона плотин путем измерения параметров сигналов, пропускаемых через бетон галереи плотины от двух генераторов (генератор высокочастотных сигналов и генератор сейсмических волн). Сигналы генераторов, проходящие через бетон, регистрируют датчиками сейсмических волн и датчиками электромагнитного поля, в виде двух ортогонально расположенных индукционных приемных катушек. По результатам измерения наведенных в индукционных приемных катушках ЭДС на участках контролируемой зоны конструкции вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне. По величине фазового сдвига определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических). Прочность бетона рассчитывают с учетом коэффициента влажности бетона по результатам измерений времени и скорости распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи. Технический результат заключается в повышении точности определения прочности бетона в конструкциях сооружений в процессе эксплуатации. 1 з.п. ф-лы, 1 ил.

 


Наверх