Способ комплексного контроля напряженно-деформированного состояния бетона плотин



Способ комплексного контроля напряженно-деформированного состояния бетона плотин

 


Владельцы патента RU 2530781:

ООО НПФ "ФАЗА" (RU)

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций. Способ контроля параметров бетона плотин путем измерения параметров сигналов, пропускаемых через бетон галереи плотины от двух генераторов (генератор высокочастотных сигналов и генератор сейсмических волн). Сигналы генераторов, проходящие через бетон, регистрируют датчиками сейсмических волн и датчиками электромагнитного поля, в виде двух ортогонально расположенных индукционных приемных катушек. По результатам измерения наведенных в индукционных приемных катушках ЭДС на участках контролируемой зоны конструкции вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне. По величине фазового сдвига определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических). Прочность бетона рассчитывают с учетом коэффициента влажности бетона по результатам измерений времени и скорости распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи. Технический результат заключается в повышении точности определения прочности бетона в конструкциях сооружений в процессе эксплуатации. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций пролетных строений мостов, путепроводов и других протяженных конструкций с напряжением арматуры в одном направлении и постоянно сжатых зонах.

Известно техническое решение «Способ извлечения информации о напряженно-деформированном состоянии (НДС) гидротехнических сооружений» (Пат. РФ №2280846. Опубл. В Б.И. №21 от 27.07.2006, аналог), заключающийся в возбуждении струнных датчиков, установленных в теле плотины, последовательностью коротких видеоимпульсных сигналов и измерении частоты собственных колебаний струны, путем спектрального анализа. По результатам спектрального анализа выбирают наиболее характерную моду собственных колебаний струнных датчиков, которые снова возбуждают последовательностью радиоимпульсов длительностью, не менее чем в 10 раз большей длительности видеоимпульса и несущей на характерной моде, перестраивают по этим модам приемник и далее измеряют частоту собственных колебаний, возбужденных последовательностью радиоимпульсов, по которой судят о силе давления НДС.

Основной недостаток струнных датчиков, вмонтированных в тело плотины, обусловлен их старением, появлением на струне ржавчины, усталости металла, нарушением герметичности, электрических утечек в цепи возбуждения, измеряемая собственная частота колебаний уже не дает однозначного результата об измеряемой силе НДС. Полезный сигнал в десятки раз ослабевает по амплитуде, а в ее спектре появляются дополнительные моды колебаний, отличные от основной частоты.

Известно также техническое решение «Способ ультразвукового контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации» (Пат. РФ №2262692. Опубл. 20.10.2005, прототип), по которому ультразвуковой контроль прочности бетона в конструкциях и сооружениях в процессе эксплуатации включает измерение времени и скорости распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной скоростей ультразвука в контролируемой зоне, выбуривание в конструкции и испытание кернов с последующим определением значений прочностей в участках, имеющих соответственно среднее и максимальное значение скорости ультразвука, а также расчетное определение прочности бетона на сжатие в участках контролируемой зоны конструкции, при этом определяют влажность бетона в намеченных участках конструкции и устанавливают среднюю и максимальную влажности бетона в контролируемой зоне, а прочность бетона по классу прочности на сжатие до В25 рассчитывают в соответствии с математической формулой.

Наиболее существенным недостатком этого способа является недостаточная точность контроля прочности бетона, обусловленная отсутствием средств, позволяющих с высокой точностью контролировать влажность бетона, что обуславливает погрешность измерения времени распространения в нем ультразвука или сейсмической волны.

Задачей предлагаемого технического решения является устранение отмеченных недостатков, а именно повышение эффективности извлечения информации о НДС гидротехнических сооружений.

Поставленная задача решается тем, что в Способ комплексного контроля напряженно-деформированного состояния бетона плотин, включающий измерение времени и скорости распространения ультразвука на участках контролируемой зоны конструкции, дополнительно подключают к контролируемому участку галереи генератор высокочастотных электрических сигналов, устанавливают парами датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне из равенства

ϕ = arccos E x E z , г д е ( 1 )

Ex - ЭДС в катушке, параллельной стене галереи;

Ez - ЭДС в катушке, перпендикулярной к стене галереи.

Через фазовый сдвиг определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических). По результатам измерений времени и скорости распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи рассчитывают прочность бетона, вводя поправки на коэффициент влажности. Зависимость угла фазового сдвига ЭДС в индукционных датчиков от влажности бетона получают экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.

Существенным отличием и новизной предлагаемого технического решения является то, что дополнительно подключают к контролируемому участку галереи генератор высокочастотных электрических сигналов и устанавливают парами - датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне. Данное техническое решение позволяет осуществить автоматическую коррекцию результатов контроля прочности бетона по времени и скорости распространения сейсмических волн в бетоне с учетом его влажности. Коэффициент поправки на влажность определяется по углу сдвига фаз высокочастотного сигнала в бетоне в точках расположения датчиков приема сейсмических сигналов. Фазовый метод измерения времени запаздывания распространения сигнала в бетоне плотины позволяет получить высокую точность физических характеристик бетона и динамику их изменения в режиме реального времени.

На фигуре 1 представлена функциональная схема устройства, реализующего способ комплексного контроля напряженно-деформированного состояния бетона плотин, где приняты следующие обозначения: излучатель сейсмических сигналов -1; приемные датчики сейсмических сигналов -21-2n и 2'1-2'n; электромагнитные датчики 31-3n и 3'1 и 3'n; нормализаторы сейсмических сигналов - 41-4n и 4'1-4'n; нормализаторы электромагнитных сигналов - 51-5n 5'1-5'n; адресный коммутатор входных сигналов - 6; аналого-цифровой преобразователь (АЦП) - 7; микропроцессор - 8; генератор высокочастотных электрических сигналов (ВЭС) - 9; генератор сейсмических сигналов (ГСС) - 10; силовой коммутатор высокочастотных электрических сигналов - 11; правая и левая сторона заземления в бетоне галереи - 12, 12'; заземление в центре бетонной галереи - 13; бетонная галерея плотины - 14; точка подключения (А) генератора сейсмических сигналов (10) к излучателю (11) сейсмических сигналов.

Устройство работает следующим образом: при включении устройства устанавливают очередность контроля левой и правой части галереи плотины. При установке первой контролируют правую часть галереи плотины, с микропроцессора (8) сигнал управления подается на генератор высокочастотных электрических сигналов (ВЭС) (9), выход которого через силовой коммутатор ВЭС (11), управляемый сигналом с микропроцессора (8), подключают к правой (12) стороне заземления в бетоне галереи. В датчиках электромагнитного поля (31-3n), установленных на теле галереи, содержащих две ортогонально расположенные индукционные приемные катушки, наводится ЭДС, содержащая информацию о физических характеристиках (влажности) бетона. Выходы датчиков электромагнитного поля (31-3n) соединены через нормализаторы электромагнитных сигналов - (51-5n), адресный коммутатор входных сигналов (6) и АЦП (7) с микропроцессором (8). В микропроцессоре (8) через вычисление отношений наведенных в катушках ЭДС измеряют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне и через него определяют влажность бетона в зоне расположения электромагнитных датчиков.

Влажность бетона определяется через отношение ЭДС в ортогональных измерительных катушках и по сдвигу их фаз

ϕ = arccos E x E z ; ( 1 )

где Ex - ЭДС в катушке, параллельной стене галереи;

Ez - ЭДС в катушке, перпендикулярной к стене галереи.

При работе генератора (9) выходной сигнал на частотах порядка единиц МГц подводится через коммутатор (11) и оплетку кабеля (X) к точкам заземления (0) и (12 или 12*) на галерее. Наведенные токи проводимости, проходящие через бетон, сильно зависят от влажности бетона и существенно превышают токи смещения. В этом случае величина контролируемой зоны влажности бетона определяется глубиной слоя скип-эффекта (δ для рабочей частоты ω тока генератора (9).

δ = 2 ω μ 0 G ; ( 2 )

где ω=2πf; f - рабочая частота генератора, Гц;

µ0=4π·10-7 - магнитная проницаемость бетона, Гн/м,

G - электропроводность бетона, См/м.

Из равенства (2) определяется необходимая рабочая частота генератора (9) для заданного значения глубины зоны контроля.

f = 1 π μ 0 G δ 2 .

Например, при G=0,01 См/м; δ=5 м; f=1 МГц.

Зависимость электропроводности бетона от влажности можно получить экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.

Затем по сигналу с микропроцессора (8) включают генератор сейсмических сигналов (10), выход которого (точка А) подключен к излучателю сейсмических сигналов (1). Распространяющийся по бетону галереи сейсмический сигнал регистрируют приемные датчики сейсмических сигналов (21-2n), выходы которых соединены через нормализаторы сейсмических сигналов (41-4n), адресный коммутатор входных сигналов (6) и АЦП (7) с микропроцессором (8). В микропроцессоре (8) через вычисление времени запаздывания сейсмического сигнала между двумя соседними сейсмоприемниками (21-2n) определяют величину НДС, с учетом измеренных ранее электрических параметров бетона с помощью высокочастотного сигнала.

Аналогичен режим работы устройства при определении физических характеристик бетона левой части галереи плотины.

Особенностью предложенного устройства контроля напряженно-деформированного состояния бетона плотин является применение высокочастотного метода контроля влажности бетона, что существенно повышает точность определения прочности бетона в конструкциях сооружений в процессе эксплуатации.

Предлагаемое устройство может быть реализовано промышленным способом.

1. Способ комплексного контроля напряженно-деформированного состояния бетона плотин, включающий измерение времени и скорости распространения сейсмических волн на участках контролируемой зоны конструкции, отличающийся тем, что к контролируемому участку галереи подключают генератор высокочастотных электрических и генератор сейсмических сигналов и вдоль галереи устанавливают парами датчики сейсмических волн Релея и датчики электромагнитного поля, содержащие две ортогонально расположенные индукционные приемные катушки, причем датчики, входящие в пары, устанавливают в непосредственной близости друг от друга, а пары датчиков размещают с заданным интервалом по контролируемому участку галереи, измеряют наведенные в индукционных приемных катушках ЭДС, из отношений которых вычисляют сдвиг фаз (тангенс угла потерь) высокочастотного сигнала в бетоне из равенства
ϕ = arccos E x E z ;
где Еx - ЭДС в катушке, параллельной стене галереи;
Ez - ЭДС в катушке, перпендикулярной к стене галереи;
через фазовый сдвиг определяют коэффициент влажности бетона в зоне расположения пар датчиков (электромагнитных и сейсмических), затем измеряют время и скорость распространения сейсмических волн на участках между парами датчиков контролируемой зоны галереи и определяют прочность бетона, вводя поправки на коэффициент влажности.

2. Способ по п.1, отличающийся тем, что зависимость угла фазового сдвига ЭДС в индукционных датчиках от влажности бетона получают экспериментально в лаборатории на смачиваемых образцах бетона соответствующей марки.



 

Похожие патенты:

Изобретение относится к высокочувствительным способу и устройству измерения силы/массы с использованием системы фазовой автоподстройки частоты. .

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. .

Изобретение относится к измерительной технике и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля напряженно-деформированного состояния других сооружений, зданий и конструкций.

Изобретение относится к техническим средствам автоматизации систем управления и предназначено для контроля физических величин. .

Изобретение относится к области испытания машиностроительных и строительных конструкций. .

Изобретение относится к области неразрушающего контроля технологических процессов в строительной индустрии и может быть использовано для получения данных о параметрах предварительно напряженных арматурных элементов (стержней, канатов и т.д.) при изготовлении железобетонных конструкций, в частности, для определения требуемого удлинения арматурного элемента, измерения напряжений в арматурном элементе и корректировки его длины.

Изобретение относится к силоизмерительной технике и может быть использовано в устройствах измерения, контроля и регулирования больших усилий сжатия около 1000 кг и более.

Изобретение относится к измерительной технике и может быть использовано для измерения усилий деформации. .

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание в виде пластины из монокристалла, в котором выполнены сквозные прорези с образованием стержневого резонатора, поверхности которого металлизированы для образования электродной системы, и маятникового подвеса в виде двух стержней, одни концы которых присоединены к чувствительному элементу, а другие концы соединены с основанием. Части поверхностей стержней маятникового подвеса металлизированы материалом, плотность которого близка к плотности материала электродной системы стержневого резонатора. Достигаемым техническим результатом является уменьшение погрешности в условиях воздействия импульсного разогрева. 1 ил.
Наверх