Патенты автора Новиков Дмитрий Олегович (RU)

Изобретение относится к горной, металлургической и химической промышленности, а также к охране окружающей среды и может быть использовано в составе твердеющей закладочной смеси для заполнения отработанных пространств в шахтах, не подтопляемых грунтовыми водами. Нерастворимое в грунтовых водах соединение нестехиометрического полисульфида мышьяка получают смешиванием и спеканием сульфидно-мышьяковистого кека с порошковой элементной серой, расход которой составляет 15-20% от массы кека. Кек предварительно высушивают до остаточной влажности не более 1,5%. Спекание проводят при температуре 330-340°С в течение 2,0-2,5 ч. Полученный стекловидный продукт примерно на 99 % состоит из нестехиометрического полисульфида мышьяка, близкого по составу к As2S5. Изобретение позволяет обезвреживать и утилизировать опасные и токсичные сульфидно-мышьяковистые кеки, а также исключить их попадание в окружающую среду, в том числе в грунтовые воды. 1 табл., 1 пр.

Изобретение относится к устройствам, обеспечивающим снижение магнитного поля объектов морской техники. Маневренный стенд для измерения и настройки магнитного поля объектов морской техники содержит устанавливаемые на объекте морской техники надводный модуль устройства определения координат и надводный модуль управления движением телеуправляемого необитаемого подводного аппарата и приема данных измерения, соединенные надводным соединительным кабелем. Надводный модуль устройства определения координат соединен с размещенным под водой приемным модулем устройства определения координат. Надводный модуль управления движением телеуправляемого необитаемого подводного аппарата и приема данных измерения соединен посредством подводного соединительного кабеля с телеуправляемым необитаемым подводным аппаратом, выполнен с возможностью перемещения под водой по сетке точек измерения под неподвижно стоящим объектом измерений. Телеуправляемый необитаемый подводный аппарат содержит измерительные датчики магнитного поля и излучающий модуль устройства определения координат. Достигается повышение точности измерения магнитного поля объекта морской техники на мобильном стенде, а также повышение качества настройки его магнитного поля до требуемого значения. 1 ил.

Изобретение относится к системам управления для промышленной автоматизации на основе программируемых контроллеров. Техническим результатом является обеспечение отказоустойчивости системы управления для промышленной автоматизации. Технический результат заявляемого технического решения достигается тем, что в качестве резервируемых компонентов использованы процессорные модули и модули ввода-вывода, резервированные линии связи между ними выполнены в виде двух независимых CAN шин передачи данных, а выходы резервированных источников питания подведены к цепям питания резервируемых компонентов через диодную развязку. 3 ил.

Использование: для обработки сигналов в сканирующих устройствах с остросфокусированным электронным пучком. Сущность изобретения заключается в том, что сканируют электронным пучком поверхность объекта поперек топологического элемента, находящегося на этой поверхности, с одновременным изменением для каждой линии сканирования значения регулируемого параметра, получают вторичноэмиссионный сигнал, преобразуют этот сигнал в цифровую форму, определяют значение контраста сигнала, анализируют зависимость контраста от регулируемого параметра, определяют по этой зависимости однозначное соответствие между значением регулируемого параметра и положением точки фокусировки относительно объекта и выставляют точку фокусировки в требуемое положение, при этом в качестве регулируемого параметра используют потенциал электрода, расположенного у анода электронно-оптической системы РЭМ. Технический результат: повышение точности выставления плоскости фокусировки электронного пучка. 1 ил.

Изобретение относится к электроэнергетике, а именно к устройствам регулирования напряжения в распределительных сетях переменного тока. Технический результат - повышение точности регулирования напряжения на питающем трансформаторе за счет локального контроля напряжения в точках присоединения потребителей. Устройство регулирования напряжения в контролируемой зоне распределительной сети, включающей питающий трансформатор с регулированием под нагрузкой (РПН) с присоединенными к нему распределительными подстанциями, содержит подключенные к распределительным подстанциям блоки контроля, выполненные идентичными, каждый из которых содержит внутри блок измерений, блок памяти, блок прогнозирования изменения напряжения и блок формирования запросов, выполненный с возможностью определения допустимого диапазона регулирования и контроля соответствия этому диапазону прогнозируемого напряжения. При этом вход блока измерений является также входом блока контроля и подключен к шине 0,4 кВ распределительной подстанции. Первый выход блока измерений соединен с блоком памяти, к которому подсоединен блок прогнозирования изменения напряжения, подключенный к первому входу блока формирования запросов, второй вход которого подключен ко второму выходу блока измерений. Выход блока формирования запросов является выходом каждого блока контроля и соединен с блоком формирования управляющих воздействий, к которому подсоединен блок реализации управляющих воздействий, подключённый к питающему трансформатору с регулированием под нагрузкой. 1 ил.

Изобретение относится к очистке и обеззараживанию воды с помощью ультрафиолетового излучения. Устройство фотохимической обработки для установок очистки и обеззараживания воды содержит каскад непрерывного облучения в виде фотохимического реактора 2 на основе одной или нескольких ультрафиолетовых ламп на парах ртути и блока управления, подключенного к лампам через коммутатор 5. В потоке обрабатываемой воды установлены по крайней мере один каскад импульсного облучения, подключенный к блоку управления 24, и анализатор загрязнений 23. Каскад импульсного облучения содержит фотохимический реактор 2 на основе источников ультрафиолетового излучения в виде импульсных ксеноновых ламп 8, блок питания 9 с зарядным устройством 11, накопительным конденсатором 10, блоком поджига 12 и схемой синхронизации 13. Анализатор загрязнений 23 выполнен с возможностью контроля концентрации загрязнений и передачи выходных сигналов в блок управления 24. Блок управления 24 выполнен с возможностью формирования управляющих импульсов на каскады импульсного облучения с возможностью увеличения или снижения их частоты, а также с возможностью изменения частоты управляющих импульсов на каскады импульсного облучения с задержкой относительно предыдущего изменения частоты управляющих импульсов на величину tзад, которая выбрана из неравенства , где Vi∑ - суммарный объем фотохимических реакторов и соединительных трубопроводов от i-го каскада импульсного облучения до анализатора загрязнений, м3; Q - объемный расход обрабатываемой воды, м3/с. Изобретение позволяет повысить производительность, степень обеззараживания и очистки воды, а также повысить функциональные возможности устройства. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области ядерной энергетики. Способ очистки жидких радиоактивных отходов (ЖРО) предусматривает предварительную фильтрацию, озонирование, дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка импульсным ультрафиолетовым излучением сплошного спектра, микрофильтрацию с отделением шлама, содержащего радиоактивный кобальт, железо, марганец, и сорбцию для удаления радиоактивного цезия. Обработку кубового остатка ЖРО импульсами ультрафиолетового излучения совмещают с воздействием импульсного магнитного поля напряженностью, при этом импульсы ультрафиолетового излучения и импульсы магнитного поля формируют синхронно. Имеется также устройство для осуществления способа очистки ЖРО. Группа изобретений позволяет повысить степень очистки ЖРО. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области ядерной энергетики и касается, в частности, вопросов обращения с жидкими радиоактивными отходами, образующимися при работе атомных электростанций. Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов содержит фотохимический реактор с импульсной ксеноновой лампой и блок питания с накопительным конденсатором, высоковольтным выпрямителем, блоком инициирования и блоком управления. Импульсная ксеноновая лампа подключена к блоку питания так, что импульсная ксеноновая лампа и накопительный конденсатор образуют разрядный контур. Колба импульсной ксеноновой лампы выполнена в виде шара или иного тела вращения. В импульсной ксеноновой лампе наименьший внутренний радиус колбы превышает расстояние между электродами не менее чем в 5 раз, а параметры импульсной ксеноновой лампы и разрядного контура связаны расчетным соотношением. Изобретение позволяет повысить эффективность и производительность процесса очистки жидких радиоактивных отходов от металлоорганических комплексов путем интенсификации УФ обработки. 2 ил.

Изобретение относится к способу очистки жидких радиоактивных отходов (ЖРО). Заявленный способ предусматривает дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка УФ-излучением ксеноновой лампы, микрофильтрацию с отделением шлама, содержащего радиоактивный кобальт, железо, марганец, и сорбцию для удаления радиоактивного цезия. При этом кубовый остаток ЖРО предварительно фильтруют на сетчатом фильтрующем материале, затем озонируют в контактной камере противоточного типа, а обработку УФ-излучением ксеноновой лампы осуществляют импульсами длительностью 10…500 мкс, при этом используют УФ-излучение сплошного спектра с интегральной плотностью излучения на поверхности ксеноновой лампы в спектральном диапазоне 190…300 нм не менее 1·107 Вт/м2. Техническим результатом является повышение эффективности и производительности процесса очистки ЖРО от радионуклидов и активированных продуктов коррозии. 8 з.п. ф-лы, 1 ил., 4 табл.
Изобретение относится к аналитической химии и может быть использовано для определения концентрации привитых аминогрупп на поверхности минеральных наполнителей. Способ определения концентрации привитых аминогрупп на поверхности минеральных наполнителей включает приготовление ацетилирующего раствора путем смешения исходных компонентов, добавление его к навеске пробы модифицированного минерального наполнителя, выдерживание для количественного протекания реакции, титрование раствором щелочи в присутствии индикатора, вычисление концентрации аминогрупп по разности результатов холостого титрования и титрования пробы. В качестве ацетилирующего раствора используют 0,5-0,6 М раствор уксусного ангидрида в смешанном растворителе дихлорэтан - пиридин в соотношении от 0,5:1-2:1, который содержит 0,025-0,15 моль/л хлорной кислоты в качестве катализатора. К навеске пробы модифицированного минерального наполнителя добавляют 0,5-0,6 М ацетилирующего раствора в смешанном растворителе, содержащем хлорную кислоту, соотношение массы навески пробы к объему ацетилирующего раствора составляет 1:4-1:5, после чего выдерживают и добавляют гидролизующую смесь, состоящую из диметилформамида, пиридина, воды, взятых в соотношении 6:3:1 соответственно. Далее полученную смесь центрифугируют для отделения осадка. Предлагаемый способ обеспечивает упрощение и расширение ассортимента исследуемых материалов, содержащих привитые аминогруппы на поверхности минеральных наполнителей. 13 пр., 1 табл.

 


Наверх