Патенты автора Шорсткий Иван Александрович (RU)

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий эмиссионной электроники на основе автоэлектронной эмиссии многоострийных структур, а также при изготовлении электродных узлов для лазерных и плазменных систем. Технический результат – возможность обеспечить высокую воспроизводимость геометрических параметров многоострийной структуры за счет использования внешнего магнитного поля, что позволяет упростить технологию изготовления. Способ изготовления автоэмиссионных катодов в виде периодической многоострийной структуры включает формирование на катодной подложке острийных автоэмиттеров, являющихся продолжением катодной подложки и фиксацию многоострийной структуры. При этом формирование катодной структуры происходит из порошкового материала на катодной токопроводящей подложке, а формирование эмиттеров и эмитирующей структуры происходит за счет воздействия внешнего магнитного поля постоянного магнита с магнитной индукцией 0,5-1,5 Тл, находящегося в осевом вращении при частоте 1-5 об/мин и расположенного так, что силовые линии магнитного поля перпендикулярны катодной подложке, при этом в качестве порошкового материала используют металлические частицы размером 10-100 мкм. 1 з.п. ф-лы, 3 ил.

Изобретение относится к масложировой промышленности. Предложен способ получения пищевого фосфолипидного продукта, включающий пять стадий смешивания сырых растительных фосфолипидов с органическим растворителем, разделение фаз на раствор нейтральных липидов в органическом растворителе и фосфолипиды под вакуумом на каждой стадии и последующую сушку фосфолипидов под вакуумом, причем перед первой стадией смешивания сырые растительные фосфолипиды обрабатывают при 35-40°С импульсным электрическим полем с напряженностью 6-7 кВ/см, количеством единичных импульсов 72000 в течение 7-9 мин, на первой стадии обработанные импульсным электрическим полем сырые растительные фосфолипиды и органический растворитель смешивают при соотношении сырые растительные фосфолипиды-органический растворитель (по массе) (1:6)÷(1:7) путем интенсивного перемешивания в течение 5-7 мин, а после второй, третьей, четвертой и пятой стадий смешивания фосфолипидов и органического растворителя полученную смесь обрабатывают импульсным электрическим полем с напряженностью 5 кВ/см и количеством единичных импульсов 16800 в течение 1-2 мин. Изобретение обеспечивает увеличение выхода целевого продукта и повышение его качества. 1 табл., 2 пр.

Изобретение относится к порошковой металлургии, в частности к устройствам для плакирования порошковых материалов. Может применяться при производстве мелкодисперсных порошков формата «ядро-оболочка». Устройство для плакирования магнитного порошка, содержащее реактор, выполненный в виде первой и второй герметичных камер, соединенных между собой переходной вставкой, трубопроводы для ввода и вывода продуктов реакции, ворошитель и выполненный с возможностью совершения возвратно-поступательных движений цилиндр из немагнитного материала. Упомянутый цилиндр разделен ободом на равные части, одна из которых размещена в реакторе, а вторая выступает за пределы реактора. Размещенная в реакторе часть цилиндра снабжена постоянным магнитом, установленным внутри нее с возможностью совершения возвратно-поступательных и вращательных движений. Выступающая за пределы реактора часть цилиндра содержит подшипниковый узел, обод и закрепленный в них шток, связанный с приводом, для обеспечения возвратно-поступательных движений. Ворошитель расположен в нижней части первой герметичной камеры. Обеспечивается повышение равномерности нанесения покрытия на мелкодисперсный порошковый магнитный материал. 1 ил.

Изобретение относится к пищевой, химической промышленности, в том числе к области пищевых добавок растительного происхождения. Способ получения сухого экстракта из фукусовых водорослей включает измельчение слоевища фукусовых водорослей, экстракцию, фильтрацию и сушку экстракта. При этом перед экстракцией слоевища водорослей обрабатывают искровым разрядом при поддержке термоэлектронной эмиссии в воздухе атмосферного давления при напряженности электрического поля 6-8 кВ/см в течение 2-3 минут. Изобретение направлено на увеличение выхода альгиновых кислот из фукусовых водорослей. 1 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к порошковой металлургии, в частности к способу плакирования порошковых материалов. Может использоваться в металлургии при производстве мелкодисперсных порошков формата «ядро-оболочка». Путем механического перемешивания в течение 0,5-1 минуты готовят смесь компонентов, взятых в следующем соотношении, мас %: порошковый магнитный материал 5-15, плакирующее немагнитное покрытие 85-95. Механосинтез осуществляют во внешнем вращательном магнитном поле постоянных магнитов с величиной магнитной индукции 0,5-0,7 Тл в течение 1-1,5 минуты. Обеспечивается повышение эффективности плакирования за счет получения однородного покрытия. 2 ил., 3 пр.

Группа изобретений относится к области технологий разрушения тканей материалов растительного происхождения, в частности овощей, плодов, лекарственных трав, биомассы для подготовки к процессу сушки. Способ подготовки растительного материала к сушке, включающий обработку материала, перемещаемого между анодным 2 и катодным 3 узлами при электроискровом напряжении, заключается в том, что осуществляют обработку растительного материала 12, которую проводят в режиме несамостоятельного газового разряда высоковольтными прямоугольными импульсами одновременно с термоэлектронной эмиссией. Напряженность электрического поля составляет 3х105- 6х105 В/м. При этом во время перемещения материала 12 катодный узел 3 совершает возвратно-поступательные движения перпендикулярно направлению движения растительного материала 12. Устройство для подготовки растительного материала 12 к сушке содержит средство генерации высоковольтных разрядов 1 между анодным 2 и катодным 3 узлами и средство перемещения 4 обрабатываемого материала 12, например транспортерной ленты. Анодные 2 и катодные 3 узлы расположены один от другого предпочтительно на расстоянии, обеспечивающем возникновение электроискрового разряда. При этом каждый из узлов 2 и 3 содержит соединенные друг с другом насадку 8 и головку 9. Головка 9 выполнена из двух постоянных магнитов и размещена в корпусе 10, а насадка 8 анодного узла 2 выполнена пилообразной. Причем к корпусу 10 головки 9 катодного узла 3, установленного с возможностью перемещения перпендикулярно направлению движения материала 12, прикреплен источник термоэлектронной эмиссии, выполненный в виде нагреваемой спирали, а его насадка выполнена в форме сферы. Способ и устройство обеспечивают повышение эффективности процесса разрушения тканей растительного сырья при сохранении эксплуатационных характеристик оборудования для осуществления способа. 2 н.п. ф-лы, 3 пр., 2 ил.

Изобретение относится к промышленности, в частности к способам изготовления композитного материала с поглощающими электромагнитные волны свойствами, и может быть использовано для экранирования (защиты) промышленного оборудования и промышленных зданий. Способ получения композитного материала включает подачу волокнистой основы, формирование волокнистого полотна путем пропитки волокнистой основы в магнитном поле с магнитной индукцией 0,3-1 Тл в движении со скоростью 0,01-0,1 м/с смесью частиц, состоящей из компонентов, взятых при следующем соотношении, мас. %: магнетит - 80-99, полимерное связующее - 1-20, фиксацию структуры волокнистого полотна путем его прокатывания в течение 0,1-2 секунд между двумя листами защитной оболочки и двух нагревающихся валов при температуре 180-400°С. Количество листов волокнистого полотна в композитном материале составляет от 1 до 10 штук. Магнетит используют сферической формы со средним размером 50 мкм. В качестве волокнистого полотна используют ватин, полиэфирный дренажный материал ДВМ 140. Изобретение позволяет повысить степень защиты от электромагнитного излучения в СВЧ-диапазоне. 4 з.п. ф-лы, 1 табл.

Изобретение относится к производству строительных материалов, а именно к производству легкого пустотелого заполнителя для строительных материалов на основе отходов рисопереработки, и может быть использовано в качестве заполнителя для тепло- и звукоизоляционных материалов и засыпок в различных строительных конструкциях для утепления. Способ получения пустотелых гранул включает получение ядра из композиции, мас.%: рисовая шелуха 10-20, вода 78-87, поливиниловый спирт 0,5-1,5, биокомпозиционный материал на основе левана 1,5, формирование на нем оболочки из быстротвердеющей вяжущей системы из пылевидного наполнителя при следующем соотношении, мас.%: ядро 30-40, пылевидный наполнитель 60-70. Формирование оболочки осуществляют путем окатывания ядра в пылевидном наполнителе, а упрочнение оболочки производят путем подсушивания гранул до набора прочности 0,48-1,3 МПа. Изобретение развито в зависимых пунктах формулы. Технический результат – получение качественных пустотелых гранул, утилизация отходов сельского хозяйства. 4 з.п. ф-лы, 4 табл., 1 пр.

Изобретение относится к очистке поверхностей различных диэлектрических изделий, в частности лабораторного оборудования пищевой и медицинской промышленности, где результат зависит от чистоты исходной поверхности. Технический результат-упрощение процесса очистки и повышение степени очистки диэлектрических поверхностей любых геометрических форм и размеров. Способ состоит в том, что внутрь очищаемого изделия помещают порцию ферромагнитного порошка в виде сферических тел размером 30-60 мкм, затем к наружной поверхности очищаемого изделия подносят устройство для очистки, состоящее из полой трубки из диэлектрического материала с глухим концом, в котором расположен постоянный магнит, для создания в месте соприкосновения с поверхностью изделия локального постоянного магнитного поля, которое собирает и удерживает на внутренней поверхности изделия ферромагнитный порошок, оказывающий определенное давление па эту поверхность. Затем очищаемое изделие заполняют водой и производят манипуляции концом устройства для очистки с постоянным магнитом по всей наружной поверхности, перемещая тем самым пучок ферромагнитного порошка по внутренней поверхности и, тем самым производя ее очистку. Силу давления ферромагнитного порошка на внутреннюю поверхность регулируют изменением расстояния между постоянным магнитом и ферромагнитным порошком. 1 ил.

Изобретение относится к пищевой и медицинской промышленности и может быть использовано в качестве устройства для очистки жидких и газообразных веществ. Фильтрующее устройство включает корпус с днищем и крышкой, патрубками подвода неочищенных и выпуска очищенных веществ и фильтрующий материал, расположенный в корпусе. Устройство содержит платформу, установленную вне и перпендикулярно к корпусу устройства и с возможностью вертикального перемещения вдоль корпуса, на котором размещена цилиндрическая насадка с двумя диаметрально противоположно расположенными постоянными магнитами, охватывающая корпус, установленная с возможностью вращения вокруг него. Фильтрующий материал состоит из ферромагнитного порошка в виде сферических тел размером 30-60 мкм, сформированного в плотную структуру во вращающемся магнитном поле цилиндрической насадки. В корпусе установлен патрубок для ввода жидкости для очистки фильтрующего материала и патрубок для вывода веществ, полученных после очистки фильтрующего материала. Цилиндрическая насадка содержит механический переключатель постоянного магнита, позволяющий изменять структуру магнитного порошка в процессе самоочистки. Цилиндрическая насадка соединена через цилиндрическую зубчатую передачу с зубчатым колесом, соединенным через редуктор с электродвигателем. Платформа соединена через червячный механизм с электродвигателем. Цилиндрическая насадка постоянно вращается вокруг корпуса устройства. Устройство позволяет обеспечить высококачественную фильтрацию, а также расширить арсенал технических средств, обеспечить процесс избирательной фильтрации с автоматической регулировкой скважности фильтрующего материала, а также применить фильтруемый элемент с возможностью самоочистки без механической разборки устройства. 3 з.п. ф-лы, 1 ил.

 


Наверх