Патенты автора Мельниченко Андрей Викторович (RU)

Изобретение относится к трубопроводной арматуре, в частности к устройствам, предохраняющим трубопровод от превышения давления. Переключающее устройство блока предохранительных клапанов содержит два трехходовых шаровых крана, которые жестко соединены друг с другом разделительной вставкой, внутри которой смонтирован червячный редуктор. Штоки трехходовых шаровых кранов соединены между собой соединительной муфтой посредством внутренних шпоночных соединений. Крепление соединительной муфты с червячным редуктором обеспечено посредством внешнего шпоночного соединения. Боковые фланцы нижнего трехходового шарового крана соединены фланцевыми соединениями с входами предохранительных клапанов через угловые переходы и нижние стравливающие кольца, на последних из которых смонтированы клиновые задвижки посредством резьбовых соединений, а боковые фланцы верхнего трехходового шарового крана соединены фланцевыми соединениями с выходами предохранительных клапанов через верхние стравливающие кольца, на которых посредством резьбовых соединений в вертикальной плоскости смонтированы по две уравнительные линии, верхние - для отбора сбрасываемой с предохранительных клапанов технологической среды, нижние - для обеспечения автоматической подачи жидкости, препятствующей гидратообразованию. Изобретение направлено на повышение надежности. 3 ил.

Изобретение относится к области машиностроения. Уплотнительный элемент выполнен в виде конусообразного кольца, имеющего в радиальном сечении форму в виде трапеции. Наружная и внутренняя конические поверхности содержат в местах контакта с опорной и прижимной поверхностями опорные плоскости, линейные размеры ширины которых соответственно равны 1/2 длин оснований трапеции. Соотношение верхнего основания к нижнему равно 1: 2. Кромки конических поверхностей притуплены с радиусным скруглением от 0,05 до 0,1 толщины упругого уплотнительного элемента тарельчатого типа по внутреннему и внешнему диаметру соответственно. Достигается повышение конструкционной прочности и энергоемкости, повышение усталостной прочности и эксплуатационного ресурса, а также повышение уплотнительных свойств. 1 ил.

Изобретение относится к автоматизированной информационной системе управления и контроля рационализаторской деятельности. Технический результат заключается в автоматизации управления и контроля рационализаторской деятельности. Система содержит сервер, снабженный программным обеспечением, и по меньшей мере АРМ автора рационализаторского предложения, АРМ ответственного по рационализаторской и изобретательской деятельности, АРМ эксперта, АРМ ответственного за план организационно-технических мероприятий по внедрению и использованию рационализаторского предложения, АРМ администратора системы управления рационализаторской деятельностью, связанные между собой посредством сети передачи данных, при этом сервер при помощи инсталлированного программного обеспечения формирует, сохраняет и передает на указанные АРМ интерфейсы для обработки различных этапов процесса управления рационализаторской деятельностью - «Подача заявления», «Экспертиза», «Внедрение и использование», «Финансовое планирование», «Отчетность». 2 з.п. ф-лы, 147 ил.

Изобретение относится к изготовлению стальных винтовых пружин сжатия с повышенной конструкционной прочностью, работающих в агрессивной сероводородсодержащей среде. Способ включает навивку пружины из прутка, ее термообработку и наклеп. Навивку пружины производят на оправке, выполненной на рабочей поверхности со спиральной канавкой, направление и шаг которой соответствуют направлению и шагу навивки изготавливаемой пружины, и с поперечным сечением в виде окружности. Наклеп производят обкаткой внутренней и внешней поверхности пружины устройством упрочнения, содержащим два деформирующих ролика, расположенных под углом 180° друг относительно друга и под углом 90° между осью вращения ролика и осью навиваемого на оправку прутка пружины. Деформирующие ролики выполнены с канавкой на своей цилиндрической поверхности, соответствующей размерам канавки оправки. Наклеп осуществляют по завершению навивки пружины и после ее термической обработки. Повышается сопротивляемость пружины против усталости, коррозии под нагрузкой и износа. 3 ил.

Изобретение относится к изготовлению изделий из твердосплавных порошковых смесей. Готовят пресс-порошок из твердосплавной смеси путем введения связывающей жидкости с последующим брикетированием полученной смеси и перетиранием сформированных брикетов с образованием пресс-порошка. Затем полученный пресс-порошок подвергают прессованию, а полученную спрессованную заготовку сушат и направляют на предварительное спекание в вакуумной печи, далее проводят пластифицирование заготовки и подвергают ее механической обработке до размеров на 30-35% больше окончательных размеров готового изделия. Проводят выжигание пластификатора и осуществляют окончательное высокотемпературное спекание заготовки в вакуумной печи с последующей окончательной механической обработкой до окончательных размеров готового изделия с полировкой рабочих поверхностей алмазной пастой. Обеспечивается изготовление изделий, применяемых в агрессивной среде, содержащей до 25% сероводорода. 1 з.п. ф-лы, 1 табл.

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть использовано при переработке атмосферного остатка дистилляции газового конденсата (АОГК). По способу комплексной переработки остатка атмосферной дистилляции газового конденсата полученную ex situ суспензию ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1% в остатке дистилляции гидрогенизата диспергируют в АОГК с получением гомогенной устойчивой суспензии ультрадисперсного катализатора, содержащей 0,02-0,05% катализатора (на молибден). Перед гидроконверсией смесь подогревают в регенеративном теплообменнике до 250-280°С и в трубчатой печи до 380-450°С, проводят гидроконверсию приготовленной смеси при этой температуре и давлении 7-10 МПа в реакторе с восходящим потоком сырья при подаче холодного водородсодержащего газа в две или три точки на разной высоте реактора. Продукты разделяют в сепараторах высокого и низкого давления с выделением газа и аминовой очисткой газа, который направляют в устройство концентрирования водорода и возвращают на гидроконверсию как водородсодержащий газ, а затем направляют на дистилляцию. Дистиллятные фракции НК-180°С и 180-350°С выводят как товарный продукт. Часть не-превращенного высококипящего остатка с температурой кипения выше 350°С, содержащего катализатор, возвращают в процесс гидроконверсии в качестве рецикла, а часть направляют на выделение металлов и отработанного катализатора, после чего часть указанного деметаллизированного остатка возвращают как остаток дистилляции гидрогенизата для получения суспензии свежего катализатора, а часть выводят как дополнительный товарный продукт - компонент судового топлива. Для осуществления этого способа используют установку, включающую блок подготовки сырья и катализатора, блок гидроконверсии АОГК, блок сепарации продуктов гидроконверсии, блок концентрирования водорода с возможностью получения водородсодержащего газа, соединенный с блоком гидроконверсии, блок выделения катализатора и блоки вывода товарного продукта - дистиллятных фракций и компонента судового топлива. Блок подготовки сырья и катализатора включает последовательно соединенные устройство получения суспензии свежего катализатора и устройство смешения суспензии катализатора с сырьем. Перед блоком гидроконверсии последовательно установлены регенеративный теплообменник и трубчатая печь. Блок гидроконверсии является реактором с восходящим потоком сырья, включающим две или три точки подачи холодного водородсодержащего газа на разной высоте реактора. Блок сепарации продуктов гидроконверсии включает сепараторы высокого и низкого давления и соединенное с ними и с блоком концентрирования водорода устройство аминовой очистки газа, и колонну атмосферной дистилляции, соединеную с устройством очистки газа, блоком вывода дистиллятных фракций, устройством смешения суспензии катализатора с сырьем и блоком выделения катализатора, который соединен с устройством получения суспензии свежего катализатора и устройством вывода второго товарного продукта - компонента судового топлива. Технический результат - повышение глубины конверсии АОГК, повышение устойчивости процесса, упрощение установки и способа, снижение капитальных и эксплуатационных затрат, исключение образования и отложения кокса. 2 н.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к области нефте- и газоперерабатывающей промышленности и может быть использовано в процессах дегазации жидкой серы от сероводорода. Способ представляет собой процесс предварительного удаления из жидкой серы физически растворенного H2S за счет центрифугирования жидкой серы в блоке центрифужной дегазации с последующим разложением полисульфидов водорода до растворенного в жидкой сере H2S в результате вакуумирования жидкой серы в блоке вакуумной дегазации. При этом подача жидкой серы в блок центрифужной дегазации осуществляется через струйный вакуумный насос, соединенный по линии разрежения с блоком вакуумной дегазации, при работе которого создается вакуум в блоке вакуумной дегазации и обеспечивается отвод из блока образованного H2S в процессе разложения полисульфидов водорода. Далее дегазированная жидкая сера выводится из блока вакуумной дегазации посредством вытеснения газообразным азотом, а удаленный H2S из блока центрифужной дегазации выводится под действием вытяжного вентилятора. Технический результат заключается в интенсификации процесса дегазации жидкой серы с остаточным содержанием H2S и H2Sx в жидкой сере, близким к абсолютным нулевым значениям, и в сокращении капитальных и эксплуатационных затрат на реализацию процесса. 3 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение может быть использовано в нефтегазовой и химической промышленности. Устройство для гранулирования жидкой серы включает гранулятор 1, загрузочный трубопровод 15, технологический узел 4 для подачи жидкой серы и вывода гранулированной серы, трубопровод для подачи жидкого хладагента 16. Гранулятор 1 выполнен в виде теплоизолированной камеры с внутренней поверхностью цилиндрической формы, в которой вертикально соосно установлен технологический узел 4 для одновременного вовлечения в процесс грануляции жидкой серы и вывода гранулированной серы. Технологический узел 4 оснащен распределительным элементом 7 для подачи жидкой серы в жидкий хладагент через отверстия для получения гранул заданного диаметра, а также винтовой поверхностью в виде шнека 8 для вывода гранулированной серы и механической передачей 9, обеспечивающей вращение технологического узла вокруг своей оси от привода 10 с переменной частотой вращения. Подвод жидкого хладагента в гранулятор 1 осуществлен в его нижней центральной точке. Распределительный элемент 7 расположен ниже уровня жидкого хладагента в грануляторе 1 и установлен в нижней части внутренней полости трубопровода технологического узла 4. Распределительный элемент 7 выполнен в виде двух перфорированных металлических пластин 12 - верхней и нижней, между которыми расположен нагревательный элемент 13. Загрузочный трубопровод 15 выполнен с возможностью обеспечения подачи жидкой серы во внутреннюю полость технологического узла 4 в зоне распределительного элемента 7 в объеме, достаточном для поддержания уровня жидкой серы в технологическом узле 4 равным не менее 0,7 к уровню жидкого хладагента в грануляторе 1 от верхней пластины распределительного элемента 7. Зона вывода гранул серы из гранулятора 1 оборудована отбортовкой 3 и воздуходувкой 19 и оснащена воронкообразным приемником 20 унесенного жидкого хладагента, выполненным с возможностью обеспечения последующего его возврата в трубопровод подачи жидкого хладагента 16. В качестве жидкого хладагента используют полиэтиленгликоль. Изобретение позволяет повысить качество гранулированной серы и эффективность процесса за счет минимально возможного расхода жидкого азота. 4 з.п. ф-лы, 1 ил., 1 табл.

Изобретение может быть использовано в нефтегазовой и химической промышленности. Устройство для криогенного гранулирования жидкой серы включает гранулятор 1, загрузочный трубопровод 15, технологический узел 4 для подачи жидкой серы и вывода гранулированной серы, трубопровод для подачи жидкого азота 16. Гранулятор 1 выполнен в виде теплоизолированной камеры с внутренней поверхностью цилиндрической формы, в которой вертикально соосно установлен технологический узел 4 для одновременного вовлечения в процесс грануляции жидкой серы и вывода гранулированной серы. Технологический узел 4 оснащен распределительным элементом 7 для подачи жидкой серы в жидкий азот через отверстия для получения гранул серы заданного диаметра, а также винтовой поверхностью в виде шнека 8 для вывода гранулированной серы и механической передачей 9, обеспечивающей вращение технологического узла 4 вокруг своей оси от привода 10 с переменной частотой вращения. Подвод жидкого азота в гранулятор 1 осуществлен в его нижней центральной точке. Распределительный элемент 7 расположен ниже уровня жидкого азота в грануляторе 1 и установлен в нижней части внутренней полости трубопровода технологического узла 4. Распределительный элемент 7 выполнен в виде двух перфорированных металлических пластин 12 - верхней и нижней, между которыми расположен нагревательный элемент 13. Загрузочный трубопровод 15 выполнен с возможностью обеспечения подачи жидкой серы во внутреннюю полость технологического узла 4 в зоне распределительного элемента 7 в объеме, достаточном для поддержания уровня жидкой серы в технологическом узле равным не менее 0,45 к уровню жидкого азота в грануляторе 1 от верхней пластины распределительного элемента 7. Место вывода гранул серы из гранулятора 1 оборудовано отбортовкой 3, обеспечивающей направление движения гранул серы в отгрузочный бункер 17. Изобретение позволяет повысить качество гранулированной серы и эффективность процесса за счет минимально возможного расхода жидкого азота. 3 з.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к способу получения автомобильного бензина. Способ включает каталитический риформинг прямогонной гидроочищенной бензиновой фракции с предварительным разделением бензиновой части реакционной смеси и разделением катализата каталитического риформинга. При этом бензиновую часть реакционной смеси предварительно путем фракционирования делят на головную, среднюю и остаточную фракции, выкипающие в интервале температур 62-85°C, 85-100°C и 100-190°C соответственно, остаточную фракцию подвергают каталитическому риформингу, катализат каталитического риформинга делят на легкокипящую и высококипящую фракции, выкипающие в интервале температур н.к.-90°C и 90°C-к.к. соответственно, и в процесс компаундирования вовлекают головку стабилизации н.к.-62°C, легкокипящую фракцию н.к.-90°C, высококипящую фракцию 90°C-к.к. с добавлением метилтретбутилового эфира. Способ позволяет получать автомобильный бензин с пониженным содержанием бензола, улучшить технологичность процесса риформинга с сохранением высоких антидетонационных характеристик топлива. 2 з.п. ф-лы, 5 пр.

 


Наверх