Патенты автора Калиенко Максим Сергеевич (RU)

Изобретение относится к металлургии, в частности к листовому материалу из титановых сплавов, обладающих жаропрочностью и стойкостью к окислению, а также стабильностью структуры при длительных эксплуатационных выдержках в диапазоне температур до 800°С, и может быть использовано для изготовления компонентов выхлопной системы транспортного средства. Листовой материал из титанового сплава для изготовления компонентов содержит в мас.%: алюминий 1,5-3,0, молибден 0,1-0,5, кремний 0,1-0,6, железо не более 0,2, кислород не более 0,15, углерод не более 0,1, азот не более 0,03, водород не более 0,015, титан - остальное. Листовой материал обладает высокими значениями сопротивления ползучести, стойкости к окислению, а также имеет стабильную структуру при длительных эксплуатационных выдержках в диапазоне температур до 800°С. Материал пригоден для формовки в холодном состоянии. 2 н. и 5 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к металлургии, в частности к созданию низколегированных титановых сплавов на основе титана, и может быть использовано для изготовления изделий, длительно работающих при высоких температурах, в частности компонентах выхлопных систем двигателей транспортных средств. Сплав на основе титана содержит, мас.%: алюминий 1,5-3,0, молибден 0,1-0,5, медь 0,5-1,5, кремний 0,1-0,6, железо не более 0,2, кислород не более 0,15, углерод не более 0,1, азот не более 0,03, водород не более 0,015, титан и неизбежные примеси - остальное. Сплав обладает комплексом высоких механических и эксплуатационных свойств, в частности высоким сопротивлением ползучести. Сплав пригоден для формовки в холодном состоянии. 2 н.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к металлургии, в частности к созданию титановых сплавов на основе титана, обладающих сопротивлением высокотемпературному окислению, и может быть использовано для изготовления изделий, длительно работающих при высоких температурах, в частности компонентов выхлопных систем двигателей транспортных средств. Сплав на основе титана содержит, мас.%: алюминий 0,7-1,5, цирконий 0,5-1,5, ниобий от более 0,5 до 1,5, молибден 0,1-0,5, кремний не более 0,5, железо не более 0,2, кислород не более 0,15, углерод не более 0,1, азот не более 0,03, водород не более 0,015, титан и неизбежные примеси - остальное. Обеспечивается комплекс высоких механических и эксплуатационных свойств, включая повышенный уровень стойкости к высокотемпературному окислению. 2 н.п. ф-лы, 3 табл., 4 ил.

Изобретение относится к области металлургии титановых сплавов и может быть использовано для получения листового проката из высоколегированного (α+β)-титанового сплава марки ВТ8. Способ включает деформацию слитка в сляб, механическую обработку сляба, многопроходную горячую прокатку и упрочняющую термическую обработку. Деформацию слитка осуществляют ковкой в два этапа, на первом из которых ковку проводят со степенью деформации не менее 80% после нагрева слитка, на втором - ковку проводят со степенью деформации 50-70% с охлаждением после ковки со скоростью 30-50°С/мин. Многопроходную горячую прокатку проводят за три этапа, на первом из которых проводят прокатку на подкат со степенью деформации не менее 70% с охлаждением подката на воздухе до комнатной температуры, на втором - прокатку на полосу с суммарной степенью деформации 40-60% с последующим охлаждением полосы на воздухе до комнатной температуры и дальнейшим раскроем полосы на заготовки, на третьем этапе осуществляют получение листового проката посредством многопроходной прокатки заготовок в поперечном направлении со степенью деформации 50-60%. Упрочняющую термическую обработку проводят путем закалки с нагревом до температуры (Тпп-80)-(Тпп-120)°С, выдержки не менее 1 часа и охлаждения на воздухе с последующим проведением старения путем нагрева до температуры (Тпп-370)-(Тпп-420)°С, выдержки 4-12 часов и последующего охлаждения на воздухе. Получают качественный листовой прокат, обладающий высоким комплексом механических свойств при комнатной и повышенной температуре, а также низкой анизотропией механических свойств за счет управления формированием текстуры при термомеханической обработке. 1 з.п. ф-лы, 3 ил., 2 табл.

Настоящее изобретение относится к области металлургии титановых сплавов и может быть использовано для повышения комплекса механических свойств листового проката из высоколегированного псевдо-альфа титанового сплава марки ВТ18У. Способ термической обработки листового проката из псевдо-альфа титанового сплава марки ВТ18У включает закалку и старение. Нагрев листового проката под закалку осуществляют при температуре (Тпп-10)-(Тпп-30)°С, а охлаждение при закалке осуществляют со скоростью 120-70°С/мин в водном растворе соли NaCl, при этом концентрацию соли рассчитывают по следующему выражению: С=К×Н, г/л, где С - концентрация соли NaCl в водном растворе, г/л, К - эмпирический экспериментальный коэффициент, учитывающий охлаждающее действие раствора, К=4-6, Н - максимальная толщина закаливаемого листового проката, мм, причем старение проводят при температуре нагрева металла (Тпп-350)-(Тпп-400)°С в течение 8-16 часов. Листовой прокат характеризуется высокими прочностными характеристиками. 2 ил., 3 табл.

Изобретение относится к обработке металлов и сплавов давлением, а именно к способам изготовления тонколистового проката на основе алюминидов титана. Способ изготовления тонколистового проката из сплава Ti - 10,0-15,0 Al - 17,0-25,0 Nb - 2,0-4,0 V - 1,0-3,0 Mo - 0,1-1,0 Fe – 1,0-2,0 Zr – 0,3-0,6 Si включает ковку слитка в сляб, механическую обработку сляба, многоэтапную горячую продольную прокатку сляба на подкат, резку подката на листовые заготовки, их адъюстажную обработку, сборку в пакет, прокатку пакета и окончательную адъюстажную обработку листов. Деформацию слитка ковкой в сляб производят в β-области при температуре Тпп+(120÷200)°С. На первом этапе прокатку сляба в подкат осуществляют в β-области, на предпоследнем этапе в (α+β)-области, окончательную прокатку в подкат проводят в (α+β)-области. Осуществляют сборку листовых заготовок в пакет таким образом, что направление их прокатки составляет угол 90° относительно направления прокатки подката, пакетную прокатку осуществляют в (α+β)-области с последующей закалкой в воде. Затем осуществляют разборку пакета и холодную прокатку каждой заготовки с промежуточными вакуумными отжигами. Тонколистовой прокат обладает высокими конструкционными и технологическими свойствами, гарантирующими уровень временного сопротивления σВ>1000 МПа и относительного удлинения δ≥3,5%. 2 ил., 2 табл.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления листов методом холодной прокатки из псевдо-альфа титановых сплавов. Способ получения листов из псевдо-альфа титановых сплавов включает деформацию слитка в сляб, механическую обработку сляба, многопроходную прокатку сляба на подкат, резку подката на листовые заготовки, многопроходную горячую прокатку заготовок, холодную прокатку, отжиг и адъюстажную обработку листов. Многопроходную прокатку сляба на подкат проводят в β-области, с суммарной степенью деформации не менее 50%, горячую прокатку листовых заготовок проводят в два этапа, причем на первом этапе проводят продольную прокатку в (α+β)-области в интервале температур ниже температуры полиморфного превращения (ТПП) на 70-200°С. На втором этапе проводят поперечную горячую прокатку с изменением направления прокатки на 90° в (α+β)-области в интервале температур ниже ТПП на 70-200°С с последующей холодной прокаткой с получением листов, при этом суммарная степень деформации при горячей и холодной прокатках на втором этапе составляет 60-90% при соотношении степеней деформации горячей к холодной прокатке от 0,8 до 1,2, отжиг листов производят при температуре 700-820°С в течение 0,5-1 часа, а затем осуществляют теплую прогладку при температуре 600±50°С. Получают тонкие листы большого формата из труднодеформируемых титановых сплавов с низкой анизотропией механических свойств и большой величиной угла загиба при комнатной температуре. 2 ил., 1 табл.

 


Наверх