Патенты автора Зайцев Кирилл Игоревич (RU)

Изобретение относится к оптике, а именно к устройствам для передачи и преобразования пучков терагерцового излучения. Заявленный волновод с субволновой фокусировкой для терагерцовой эндоскопии включает полую трубку, на внешней поверхности которой имеется оболочка. Внутренний диаметр трубки составляет не более 6 мм, на выходном торце канала на оси имеется сапфировая сферическая плосковыпуклая линза диаметром от 1 до 2 мм, направленная выпуклой частью внутрь канала, а к плоской поверхности сапфировой сферической плосковыпуклой линзы и торцу волновода прижата сапфировая плоскопараллельная пластина. Общая толщина пластины и линзы составляет 0,75 от диаметра линзы, а толщина пластины составляет не более 0,25 от диаметра линзы. Технический результат - увеличение пространственного разрешения эндоскопической терагерцовой спектральной диагностики, расширение диапазона рабочих температур и перечня возможных объектов исследования, включая живые биологические объекты. 3 ил.

Изобретение может быть использовано в терагерцовой (ТГц) спектроскопии и в ТГц изображающих системах в биомедицине, химической и фармацевтической промышленности, в системах неразрушающего контроля и безопасности и т.п.. Линза для ТГц излучения имеет тело из материала с высоким пропусканием ТГц излучения и со структурой с периодом меньше длины волны излучения. Используется опалоподобный материал с показателем преломления от 1,6 до 1,95, в порах материала имеется вещество с высоким пропусканием в диапазоне ТГц излучения, в том числе газ. Способ изготовления линзы включает получение опалоподобного материала путем осаждения и высушивания коллоидной суспензии глобул SiO2 равного диаметра, выбранного из диапазона от 200 до 1000 нм с отклонением значения диаметра не более 5%, спекающий отжиг при температуре от 200 до 1200°С и заполнение остаточных пор веществом с отличающимся показателем преломления или связующим. Технический результат - расширение номенклатуры ТГц элементов, увеличение вариативности возможных форм и характеристик линз, увеличении диапазона их рабочих температур. 2 н.п. ф-лы, 3 ил.

Способ получения плосковыпуклых оптических элементов терагерцового диапазона из опала на основе кремнезема заключается в получении заготовки путем седиментации частиц аморфного кремнезема в емкости, высушивания и спекающего отжига при температуре от 900 до 1200°С. Дно емкости имеет вогнутую форму, инвертированную к форме выпуклой поверхности элемента, масса частиц в емкости берется равной или больше массы частиц, образующих элемент заданной формы, диаметр емкости в 1.03…1,27 раза больше диаметра элемента. Выпуклая поверхность элемента может состоять из наклонных граней и/или конусов, углы граней и образующей конусов дна емкости равны соответствующим углам готового элемента, или выпуклая поверхность элемента может являться частью сферы, диаметр соответствующей сферической поверхности дна емкости в 1,03…1,27 раза больше диаметра поверхности готового элемента. Технический результат - повышение производительности получения оптических элементов ТГц диапазона и повышение выхода годного. 2 з.п. ф-лы, 3 ил., 1 табл., 2 пр.

Изобретение относится к области выращивания монокристаллических сапфировых заготовок из расплава для изготовления деталей из сапфира для оптических применений, микроскопии, измерительной техники. Способ получения торцевых поверхностей с кривизной на монокристаллах сапфира включает затравливание с поверхности формообразователя 1 на затравочный кристалл 3, выращивание из столба расплава 5 кристалла 4 требуемой формы и резкий отрыв кристалла 4 от формообразователя 1, который выполнен с цилиндрическими выемками 2 с диаметром рабочей поверхности d, равным или большим поперечных размеров поверхностей с кривизной 7, и глубиной Н, равной или большей d, положение выемок 2 соответствует положению поверхностей с кривизной 7 в сечении кристалла 4, перед отрывом кристалла 4 заполненные расплавом 5 выемки располагают под фронтом кристаллизации 6. В момент отрыва выполняют условие зацепление мениска расплава 5 за кромку цилиндрической выемки 2. Формообразователь 1 выполнен с отверстием питающего канала диаметром от 10 до 200 мкм. Перед отрывом кристалла 4 увеличивают высоту мениска расплава путем повышения температуры в зоне кристаллизации и/или увеличения скорости выращивания кристалла. Технический результат состоит в упрощении технологического процесса получения торцевых оптических поверхностей с кривизной на монокристаллическом сапфире, уменьшении поперечных размеров изделий до 0,3 мм и меньше, на которых получают поверхности с кривизной. 3 з.п. ф-лы, 4 ил.

Изобретение относится к медицинской технике, а именно к световодным устройствам для доставки излучения от источника к объекту с точечной фокусировкой. Технический результат состоит в уменьшении потерь при доставке излучения для создания точечных объемов облучения, увеличения диапазона глубины залегания объектов точечного лазерного воздействия, осуществляемого устройством. Световодный инструмент с микрофокусировкой состоит из оптоволоконного световода, размещенного в канале сапфирового капилляра, имеющего закрытую рабочую часть с комбинированным профилем, в котором плавное сужение с переходом к стержню меньшего диаметра оканчивается полусферической микролинзой диаметром не более 500 мкм. 5 ил.

Группа изобретений относится к медицинской технике. Технический результат состоит в упрощении способа слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности измерения глубины ледяного фронта в ткани с применением спектроскопии рассеяния, не оказывающей воздействия на объекты криохирургии и организм в целом. Способ заключается во внешнем измерении обратнорассеянного излучения с помощью нескольких пар облучающих и приемных волокон с различными глубинами миграции регистрируемых фотонов одновременно с внешним замораживанием; по времени стабилизации сигнала обратнорассеянного излучения в каждой паре волокон оцениваются положение и скорость движения ледяного фронта. Система включает криодеструктор с сапфировым хладопроводом с протяженными каналами, в которых расположены волокна, присоединенные попарно к источнику монохроматического излучения и фотометрической системе, расстояние между волокнами в каждой паре возрастает с равным приращением, на излучающих волокнах имеются волоконные аттенюаторы; в частном случае реализации имеется емкость, содержащая запас жидкого азота, в которую погружен дистальный конец сапфирового хладопровода. 2 н. и 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ), регистрируют интерференционную картину, получаемую в результате интерференции собственных мод волновода. Сапфировая ячейка представляет собой двухмодовый сапфировый фотонно-кристаллический ТГц волновод с круглой диафрагмой на входном торце, а также диафрагмой с несимметричным отверстием на выходном торце. Технический результат настоящего изобретения состоит в повышении чувствительности внутриволноводной интерферометрии, расширении диапазона режимов, при которых возможно проведение измерений, включая измерения при температурах вплоть до 2000°С, при существенно высоком/низком давлении, в химически агрессивных средах. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде гексагональной структуры. При этом ось С монокристаллического сапфира, из которого выполнен волновод, направлена вдоль каналов, а минимальный размер сечения каналов волновода равен или больше длины волны передаваемого терагерцового излучения. Технический результат состоит в уменьшении удельных потерь энергии передаваемого излучения, а также в возможности получения стабильного спектрального состава передаваемого излучения. 5 з.п. ф-лы, 4 ил.

 


Наверх