Патенты автора Денисов Сергей Владимирович (RU)

Изобретение относится к области металлургии, а именно к производству хладостойкого листового проката, применяемого для объектов металлургической, нефтегазовой отраслей промышленности, строительства, транспортного и тяжелого машиностроения, мостостроения, производства подъемных механизмов и средств транспортировки грузов, работающих в экстремальных условиях Крайнего Севера. Осуществляют непрерывную разливку стали, содержащей, мас.%: углерод 0,15-0,25, кремний 0,35-0,60, марганец 1,30-1,90, молибден 0,01-0,30, алюминий 0,02-0,07, хром не более 0,15, никель не более 0,15, медь не более 0,10, титан не более 0,015, ванадий не более 0,01, ниобий не более 0,008, бор до менее 0,001, сера не более 0,005, фосфор не более 0,013, азот 0,001-0,008, железо – остальное, с получением слябов. Нагревают слябы до температуры 1180-1250°С и проводят многопроходную горячую прокатку листов с температурой конца чистовой прокатки 860-980°С. Полученные листы подвергают закалке в интервале температур от 850°С до менее 920°С с охлаждением водой и с последующим отпуском при температуре 550-700°С. Обеспечивается получение проката, обладающего высоким уровнем механических характеристик, а также хладостойкостью до минус 70°С. 4 табл., 1 пр.

Изобретение относится к устройствам для непрерывного разделения на фракции навозных стоков животноводческих предприятий. Устройство для разделения навозных стоков на фракции содержит корпус с загрузочным и выгрузным патрубками, заключенный внутри корпуса фильтрующий элемент с размещенным в нем и связанным с механическим приводом транспортирующим органом в виде ленточной спирали. Загрузочный патрубок, закрепленный соосно напорному трубопроводу, снабжен фильтром, установленным под углом к корпусу, внутри которого размещен желобочный фильтрующий элемент, состоящий из наклонной и горизонтальной поверхностей. Причем горизонтальная поверхность фильтрующего элемента охватывает нижнюю часть ленточной спирали транспортирующего органа. В торце напорного трубопровода размещен эжектор со сливным патрубком и с всасывающим трубопроводом, соединенным со сборником фильтрата, расположенным в нижней части корпуса. Изобретение обеспечивает снижение влажности твердой фракции навозных стоков за счет увеличения времени гравитационного фильтрования сгущенной фракции. 2 ил.

Изобретение относится к металлургии, а именно к способам производства холоднокатаных полос из сверхнизкоуглеродистых IF-сталей, которые могут быть использованы для изготовления штампованных изделий особосложной формы. Способ производства холоднокатаных полос из IF-стали включает выплавку стали, разливку, горячую прокатку с получением полос, травление, смотку полос в рулоны, холодную прокатку полос, рекристаллизационный отжиг в агрегате непрерывного отжига и дрессировку. Выплавляют сталь, содержащую, мас.%: С 0,003-0,006, Si 0,015-0,030, Mn 0,06-0,15, Al 0,01-0,06, Ti 0,04-0,06, Fe и неизбежные примеси - остальное, в нее вводят кальций и магний в качестве модификаторов неметаллических включений, смотку полос в рулоны проводят при температуре не ниже 650°С, при этом сталь содержит неметаллические включения комплексного состава, размерами не более 5 мкм, содержащие алюминий, кальций, магний, титан и кислород, причем суммарное содержание кальция, магния, титана и алюминия во включениях соответствует уравнению ([Са]+[Mg]+[Ti])/[Al]≥1, где [Са], [Mg], [Ti] и [Al] - содержание в неметаллических включениях кальция, магния, титана и алюминия соответственно. Обеспечивается повышение коррозионной стойкости при сохранении высоких показателей пластичности, штампуемости и стабильности прочностных характеристик. 2 табл., 3 пр.

Изобретение относится к устройствам для непрерывного обезвоживания пивной дробины на предприятиях пивоваренного производства. Декантер состоит из корпуса 1, внутри которого размещен осадительный цилиндроконический ротор 2 с окнами для выгрузки осадка 3 и вывода фугата 4, с возможность вращения на коренных подшипниках 5, питающей трубы 6 с окном 7, привода 8, шнека 9 для транспортирования осадка, повторяющего форму осадительного цилиндроконического ротора 2. Соосно осадительному цилиндроконическому ротору 2 размещено устройство для дополнительного обезвоживания осадка 10, включающее жестко закрепленный неподвижный диск 11, на внешней стороне которого закреплен фильтровальный сектор 12 с перфорированной поверхностью, и закрытое кожухом 13. Внутри фильтровального сектора 12 расположен конусно-цилиндрический барабан 14, жестко закрепленный на оси вращения шнека 9 и своей конической частью упирающийся в окно для выгрузки осадка 3. На цилиндрической части барабана 14 размещены жестко закрепленные радиальные лопатки 15 для создания центробежной фильтрующей силы осадка пивной дробины и очистки внутренней перфорированной поверхности фильтровального сектора 12. Фильтровальный сектор 12 соединен с патрубком для выгрузки твердой фракции и патрубком 17 для вывода фильтрата. Для вывода фугата из зоны осаждения цилиндроконического ротора 2 декантер снабжен сливным патрубком 18. Технический результат: снижение влажности твердой фракции пивной дробины. 2 ил.

Изобретение относится к области металлургии, а именно к способам производства высокоштампуемых листовых сверхнизкоуглеродистых IF-сталей, которые могут быть использованы для изготовления штампованных изделий особо сложной формы. Способ производства холоднокатаных полос из IF-стали включает выплавку стали, разливку, горячую прокатку с получением полос, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в агрегате непрерывного отжига и дрессировку. Выплавляют сталь, содержащую, мас.%: С - 0,003-0,006, Si - 0,015-0,030, Mn - 0,06-0,15, Al - 0,01-0,06, Ti - 0,04-0,06, Fe и неизбежные примеси - остальное, горячую прокатку заканчивают при температуре 890-930°С, холодную прокатку производят на полосы толщиной не более 1,2 мм, рекристаллизационный отжиг проводят при температуре 820-840°С, а скорость движения полос в агрегате непрерывного отжига составляет не менее 120 м/мин. Обеспечивается стабильность высоких прочностных характеристик и коррозионной стойкости при сохранении высоких показателей пластичности и штампуемости. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката из низколегированных сталей, который может быть использован в автомобильной промышленности. Способ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг. Выплавляют сталь, содержащую, мас. %: С - 0,05-0,07, Mn - 0,35-0,60, Si 0,02-0,07, Аl - 0,03-0,06, N - не более 0,007, Nb - 0,025-0,035, Fe и неизбежные примеси - остальное. Температуру конца горячей прокатки и температуру рекристаллизационного отжига рассчитывают по зависимостям, а температуру смотки горячекатаных полос поддерживают в диапазоне 560-620°С. Рекристаллизационный отжиг осуществляют при обработке холоднокатаного проката в агрегате непрерывного отжига, в котором окончание ускоренного охлаждения и начала перестаривания для проката с минимальным значением предела текучести 300 МПа и 340 МПа осуществляют при температуре, находящейся в интервале 360-380°С, а для проката с минимальным значением предела текучести 380 МПа - в интервале 400-420°С. Обеспечивается повышение пластичности и расширение технологических возможностей путем получения из стали одинакового химического состава проката различных классов прочности, т.е. создание кассетной технологии. 2 табл.

Изобретение относится к производству холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали, используемому в автомобильной промышленности. Способ включает выплавку стали, разливку, горячую прокатку, холодную прокатку и рекристаллизационный отжиг. Выплавляют сталь, содержащую, мас. %: углерод 0,11-0,15, кремний 0,02-0,50, марганец 2,0-2,4, хром 0,25-0,55, молибден 0,10-0,30, ниобий 0,01-0,03, железо и неизбежные примеси остальное. Температура окончания горячей прокатки 830-880°С. Отжиг осуществляют в агрегате непрерывного отжига при режиме, включающем нагрев до температуры отжига 760-800°С, выдержку, замедленное охлаждение до температуры ниже Ar3, ускоренное охлаждение до температуры начала перестаривания, перестаривание и окончательное охлаждение. Температура окончания ускоренного охлаждения 250-300°С. Натяжение проката на стадиях нагрева и выдержки соответствует удельной нагрузке 8-10 Н/мм2, на стадиях замедленного и ускоренного охлаждения - 9-11 Н/мм2, а на стадии перестаривания - 6-8 Н/мм2. Обеспечивается повышение штампуемости холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали. 2 табл.

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного листового проката из высокопрочных низколегированных сталей, используемого в автомобильной промышленности. Выплавляют сталь, содержащую, мас.%: С 0,05-0,07, Mn 0,35-0,60, Al 0,03-0,06, N не более 0,007, Nb 0,025-0,035, Fe и неизбежные примеси - остальное, осуществляют ее разливку. Осуществляют горячую прокатку с получением горячекатаных полос и их охлаждение водой, при этом горячую прокатку завершают при температуре в диапазоне 830-870°С. Сматывают горячекатаные полосы в рулоны при температуре 550-600°С, а затем осуществляют холодную прокатку с получением холоднокатаного проката, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку. Рекристаллизационный отжиг с нанесением цинкового покрытия проводят в агрегате непрерывного горячего цинкования. Температуру рекристаллизационного отжига и температуру полосы на выходе из секции охлаждения после ванны цинкования устанавливают в зависимости от требуемого класса прочности, численно равного требуемому минимальному пределу текучести 300 Н/мм2, 340 Н/мм2 и 380 Н/мм2 в соответствии с зависимостями: Тотж.=(-0,875 Кпр+1062,5)±15 и Тпвц.=(-0,75 Кпр+485)±20, где Тотж. - температура рекристаллизационного отжига, °С, Тпвц. - температура полосы на выходе из секции охлаждения после ванны цинкования, °С, Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести 300 Н/мм2, 340 Н/мм2 и 380 Н/мм2, -0,875; 1062,5; -0,75; 485 - эмпирические коэффициенты. После рекристаллизационного отжига холоднокатаный прокат до входа в камеру выравнивания температуры, расположенную перед ванной цинкования, ускоренно охлаждают до температуры окончания ускоренного охлаждения со скоростью, обеспечивающей сохранение углерода в твердом растворе и его участие в упрочнении в процессе старения при температуре окончания ускоренного охлаждения в интервале 560-600°С для проката с минимальным значением предела текучести 300 Н/мм2 или при температуре окончания ускоренного охлаждения в интервале 510-550°С для проката с минимальным значением предела текучести 340 Н/мм2 и 380 Н/мм2. Обеспечивается повышение пластичности, а также расширение технологических возможностей способа за счет получения проката различных классов прочности из стали одинакового химического состава. 2 табл.

Изобретение относится к черной металлургии, в частности к производству горячекатаного рулонного проката из криогенной конструкционной стали для производства, транспортировки и хранения сжиженных газов. Возможность получения полосы с высокой хладостойкостью при -196°С при одновременном сочетании повышенной прочности и достаточного ресурса пластичности без применения специальной термической обработки обеспечивается за счет того, что осуществляют выплавку стали, содержащей, мас. %: 0,01-0,05 С; 0,10-0,30 Si; 0,20-0,60 Мn; не более 0,10 Сr; 8,90-10,0 Ni; 0,001-0,010 V; 0,02-0,08 Аl; 0,001-0,008 N; 0,001-0,20 Сu; не более 0,003 S; не более 0,010 Р, остальное Fe, разливку, горячую прокатку сляба в черновой и чистовой непрерывной группах клетей широкополосного стана, дифференцированное охлаждение полосы водой сверху и снизу секциями душирующего устройства на отводящем рольганге с последующей смоткой в рулон. Температурный режим производства проката регламентирован. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения технологических возможностей для получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180 способ включает нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, причем заготовка получена из стали, содержащей следующие компоненты, мас.%: углерод 0,11-0,13, кремний 0,02-0,40, марганец 2,0-2,2, хром 0,25-0,40, молибден 0,10-0,30, ниобий 0,015-0,025, железо и неизбежные примеси - остальное, в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 нагрев ведут до 770-790°С и класса прочности 1180 нагрев ведут до 730-750°С, а скорость движения проката в агрегате непрерывного отжига для классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью V=(80-20h)±10, где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью V=(140-40h)±200, где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин. 2 табл.

Изобретение относится к черной металлургии, в частности к производству нового высокоэффективного вида металлопродукции - листового проката из криогенной конструкционной стали для производства, транспортировки и хранения сжиженного природного газа. Для обеспечения высокой хладостойкости стали при одновременном сочетании повышенной прочности и достаточного ресурса пластичности стальные заготовки нагревают до температуры горячей деформации, прокатывают и дважды закаливают в воде при температурах 770-930°С и 640-730°С. После двойной закалки проводят высокий отпуск в интервале температур 540-630°С с охлаждением на воздухе, при этом слябы изготавливают из стали следующего химического состава, мас. %: 0,02-0,06 С; 0,10-0,30 Si; 0,20-0,60 Mn; не более 0,15 Cr; 8,50-10,00 Ni; 0,01-0,20 Mo; 0,001-0,015 V; 0,02-0,08 Al; 0,001-0,008 N; 0,002-0,03 Nb; 0,002-0,03 Ti; 0,01-0,20 Cu; не более 0,003 S; не более 0,010 P, остальное Fe. После термообработки листы из криогенной конструкционной стали обладают следующим комплексом механических свойств: предел текучести не менее 585 МПа, временное сопротивление разрыву не менее 680 МПа, относительное удлинение δ5 не менее 18% и ударная вязкость KCV при минус 196°С не менее 100 Дж/см2. 4 табл.

Изобретение относится к области черной металлургии, в частности к производству толстолистового проката из низколегированной стали повышенной прочности, используемой при производстве электросварных прямошовных труб для строительства магистральных нефте- и газопроводов в северных широтах. Для обеспечения повышенной хладостойкости при сохранении достаточного уровня прочностных и пластических свойств осуществляют выплавку стали, содержащей в мас.%: углерод 0,04-0,08, марганец 1,65-1,95, кремний 0,10-0,30, алюминий 0,02-0,05, хром 0,01-0,30, никель 0,80-1,00, медь 0,35-0,50, молибден 0,10-0,20, титан 0,010-0,030, ниобий 0,020-0,050, ванадий 0,001-0,050, азот 0,001-0,008, сера не более 0,005, фосфор не более 0,015, железо – остальное, разливку на заготовки, аустенитизацию при 1120-1200°С, предварительную деформацию при 940-1090°С, последующее охлаждение раската на воздухе до температуры начала окончательной деформации, окончательную деформацию при 720-770°С и ускоренное охлаждение листового проката со скоростью не менее 12°С/с в интервале температур от не менее 700°С до 630-670°С с его последующим замедленным охлаждением в штабеле. 4 табл.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, класса прочности К60. Для повышения хладостойкости, трещиностойкости и коррозионной стойкости при сохранении достаточного уровня прочностных и пластических свойств слябы нагревают до 1130-1180°С, проводят многопроходную черновую прокатку при единичных относительных обжатиях не менее 12% при 950-1070°С, чистовую прокатку при 790-850°С, осуществляют ускоренное охлаждение листового проката со скоростью 16-26°С/с, при этом температуру начала ускоренного охлаждения принимают не менее 780°С, а конца - в диапазоне 530-600°С. Низколегированная сталь имеет следующий химический состав, мас.%: углерод 0,05-0,08, марганец 1,60-1,75, кремний 0,10-0,35, алюминий 0,02-0,05, хром 0,01-0,10, никель 0,15-0,30, медь 0,10-0,20, молибден 0,002-0,27, титан 0,015-0,030, ниобий 0,045-0,065, ванадий 0,003-0,030, азот 0,001-0,008, сера 0,001-0,005, фосфор 0,003-0,013, железо – остальное. 4 табл.

Изобретение относится к области металлургии, в частности к производству листового проката из конструкционных сталей северного исполнения. Для повышения хладостойкости и трещиностойкости при сохранении достаточного уровня прочностных и пластических свойств в прокате выплавляют сталь, содержащую, мас.%: углерод 0,09-0,13, марганец 1,40-1,60, кремний 0,50-0,70, алюминий 0,025-0,090, хром 0,03-0,10, никель (0,02-0,10, медь 0,03-0,10, молибден 0,002-0,050, титан 0,004-0,025, ниобий 0,001-0,01, ванадий 0,003-0,010, азот 0,001-0,008, сера 0,001-0,005, фосфор 0,003-0,016, кальций 0,0001-0,01, железо – остальное, при этом по первому варианту способа предварительную деформацию с регламентированными обжатиями проводят при температуре 950-1100°С, а окончательную деформацию осуществляют при температуре 880-760°С, далее листовой прокат замедленно охлаждают в штабеле и на воздухе до температуры окружающей среды. По второму варианту способа после завершения окончательной деформации осуществляют ускоренное охлаждение листового проката со скоростью 5-20°С/с до температуры 700-600°С. а затем листовой прокат охлаждают на воздухе. 2 н.п. ф-лы, 4 табл.

Изобретение относится к области производства высокопрочного хладостойкого листового проката из низколегированной стали с повышенной хладостойкостью для транспортного и тяжелого машиностроения. Получение экономнолегированного листового проката, обладающего повышенной хладостойкостью и трещиностойкостью при сохранении достаточного уровня прочностных и пластических свойств, обеспечивается за счет того, что выплавляют сталь следующего состава, мас. %: углерод (0,16-0,27), кремний (0,33-0,62), марганец (1,30-1,90), молибден (0,01-0,30), алюминий (0,02-0,07), хром (не более 0,15), никель (не более 0,15), медь (не более 0,10), титан (0,001-0,015), ванадий (0,001-0,01), ниобий (0,001-0,008), бор (0,001-0,005), азот (0,001-0,008), сера (не более 0,005), фосфор (не более 0,012), железо - остальное. При этом производится непрерывная разливка стали в слябы, их нагрев в интервале температур 1180-1250°С, многопроходная горячая прокатка листов с температурой конца от 860 до 980°С, закалка водой при температуре 920-970°С с последующим отпуском при температуре 500-650°С. 4 табл.
Изобретение относится к области металлургии, а именно к сталям, используемым для производства магистральных труб. Сталь содержит, мас.%: углерод от 0,11 до менее 0,15, кремний от 0,40 до менее 0,50, марганец 1,30-1,60, хром не более 0,30, никель 0,06-0,20, медь не более 0,30, алюминий не более 0,05, титан не более 0,03, азот не более 0,008, сера не более 0,040, фосфор 0,015-0,030, железо остальное. Сталь имеет феррито-перлитную структуру, величину временного сопротивления разрыву σВ не менее 530 Н/мм2, величину ударной вязкости KCU-40 не менее 120 Дж/см2. Улучшаются потребительские свойства указанных труб. 1 пр.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах. Техническим результатом изобретения является повышение прочности и вязкости стали при отрицательных температурах, а также свариваемости рулонного проката. Для достижения технического результата производят нагрев слябов до температуры 1200-1260°C, прокатку, ускоренное охлаждение и смотку, при этом температуры конца прокатки и смотки поддерживают в диапазонах 780-840°C и 530-590°C соответственно, ускоренное охлаждение полос осуществляют ступенчато в два этапа, причем на первом этапе при углеродном эквиваленте стали Сэкв=0,36-0,37% полосу охлаждают до температуры 620±20°C, а при Сэкв=0,42-0,43% - 600±20°C, а на втором этапе охлаждение полосы ведут со скоростью 5-30˚C/с до температуры смотки. Сляб получают из низколегированной стали, содержащей, мас.%: 0,05-0,11 С, 1,45-1,75 Мn, 0,15-0,30 Si, 0,001-0,06 V, 0,04-0,08 Nb, 0,01-0,025 Ti, 0,02-0,05 Al, 0,01- 0,25 Cr, 0,01-0,25 Ni, 0,01-0,25 Cu, [Cr]+[Ni]+[Cu]≤0,60%, 0,0001-0,005 S, 0,0001-0,015 P, 0,001-0,010 N. 3 табл., 1 пр.

Изобретение относится к обработке металлов давлением и может быть использовано для упрочнения металла в процессе обработки. Для повышения прочностных характеристик производимой стали осуществляют нагрев заготовки выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку в температурном диапазоне 950-770°C в течение не менее 60 с с обеспчением формирования наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо в матрице парамагнитного кубического гранецентрированного и/или объемноцентрированного железа и последующую термическую обработку в интервале 680-450°C в течение не менее 80 с, обеспечивающую формирование наноразмерных выделений Cu-Cu и/или Cu-Ni в матрице ферромагнитного кубического объемноцентрированного железа. 2 з.п. ф-лы, 4 пр.

Изобретение относится к области термомеханической обработки для изготовления стального проката с требуемыми свойствами. Для обеспечения требуемого уровня потребительских свойств металлопроката получают заготовку из стали, содержащей, мас.%: C 0,05-0,18, Si 0,05-0,6, Mn 1,30-2,05, S не более 0,015, P не более 0,020, Cr 0,02-0,35, Ni 0,02-0,45, Cu 0,05-0,30, Ti не более 0,050, Nb 0,010-0,100, V не более 0,120, N не более 0,012, Al не более 0,050, Mo не более 0,45, железо и неизбежные примеси остальное. Заготовку нагревают и осуществляют черновую прокатку при температурах, превышающих температуру рекристаллизации аустенита, с междеформационной паузой, обеспечивающей требуемое снижение температуры металла, затем проводят чистовую прокатку, правку и ускоренное охлаждение проката, при этом температуру нагрева под прокатку Т устанавливают с обеспечением требуемой растворимости карбидов и нитридов микролегирующих элементов и определяют по зависимости: t+280°C<T<t+310°C, где t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C, a теплоотвод с поверхности проката в процессе ускоренного охлаждения задают с обеспечением формирования требуемой объемной доли бейнита в сечении металлоизделия. 2 з.п.ф-лы, 4 пр.

Изобретение относится к прокатному производству, в частности производству листового проката для изготовления электросварных труб

Изобретение относится к области металлургии, конкретнее к способу прокатки толстых листов в интервале толщин 300-80 мм на одноклетьевом реверсивном стане, включающем разбивку ширины, кантовку, прокатку в горизонтальных и вертикальных валках, при этом прокатку листов в горизонтальных валках проводят с относительными обжатиями при соблюдении определенных соотношений, приведенных в описании, что позволяет предотвратить трещинообразование боковых граней, уменьшить величину смещения трещин от кромок раската к его центру и снизить норму боковой обрези

Изобретение относится к области металлургии, конкретнее к производству проката на толстолистовых одноклетевых реверсивных станах горячей прокатки с индивидуальным приводом рабочих валков

Изобретение относится к области прокатного производства и может быть использовано при производстве широких горячекатаных листов, предназначенных для изготовления труб магистральных газопроводов

Изобретение относится к области металлургии и может быть использовано при производстве широких горячекатаных листов для изготовления труб магистральных газопроводов

Изобретение относится к термомеханической обработке и может быть использовано при производстве холоднокатаной ленты для изготовления монетной заготовки

Изобретение относится к области металлургии, конкретнее к прокатному производству низколегированных сталей различных классов прочности, и может быть использовано для производства готовых листов, используемых в качестве исходной заготовки для прямошовных электросварных труб большого диаметра

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном класса прочности К60, предназначенного для изготовления труб большого диаметра для магистральных газопроводов

Изобретение относится к металлургии, конкретнее к производству проката из сложнолегированных конструкционных сталей повышенной прочности для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и др

Изобретение относится к металлургии, конкретнее к производству штрипса из стали класса прочности К65-К70 толщиной до 35 мм для труб магистральных трубопроводов диаметром до 1420 мм

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов толщиной 20-23 мм класса прочности К60, предназначенных для изготовления труб для магистральных газопроводов

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов для изготовления труб большого диаметра, применяемых в магистральных газопроводах

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из стали класса прочности К56 для изготовления электросварных прямошовных труб сейсмостойкого исполнения С2 для магистральных нефтепроводов

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности Х70

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности К52-К60

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности К52-К60

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном класса прочности К52-К60

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности Х60

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов, преимущественно из низколегированных марок стали категории прочности 265-325

Изобретение относится к черной металлургии и термической обработке и может быть использовано при получении высокопрочной листовой низколегированной стали для металлоконструкций, эксплуатируемых в районах Крайнего Севера

Изобретение относится к области металлургии, а именно к производству толстолистового проката из хладостойкой стали повышенной прочности и улучшенной свариваемости для судостроения, топливно-энергетического комплекса, строительства
Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов, преимущественно из высокопрочных низколегированных марок стали категории прочности 345-390

Изобретение относится к радиолокации, а именно - к радиолокационным антенным решеткам, которые могут быть использованы в радиотехнических системах для определения координат целей с помощью моноимпульсного метода пеленгации

Изобретение относится к области металлургии, конкретнее к производству конструкционных сталей повышенной и высокой прочности, улучшенной свариваемости для применения в судостроении, строительстве, мостостроении и др

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос преимущественно из трубных марок стали класса прочности Х65
Изобретение относится к области металлургии, в частности к технологии получения горячекатаного подката тонких толщин из стали для последующей переработки в холоднокатаную полосу для эмалирования
Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос преимущественно трубных марок стали

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос преимущественно из трубных марок стали

 


Наверх