Патенты автора Лысак Владимир Ильич (RU)

Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 3,0 до 20,0 мм. Осуществляют аргонодуговую сварку неплавящимся электродом. На свариваемые поверхности предварительно наносят флюс-пасту в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3. Получают оксидное покрытие с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%. Технический результат заключается в увеличении области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 3-20 мм. 2 табл.
Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 4,0 до 30,0 мм. На свариваемые поверхности наносят флюс-пасту в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3. Получают покрытие с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%. Сварку осуществляют в смеси защитных газов, состоящей из 82 об.% аргона и 18 об.% углекислого газа. Технический результат заключается в увеличении области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм. 2 табл.

Изобретение относится к автоматизированной дуговой наплавке в среде защитных газов двумя проволоками сплошного сечения и может использоваться при производстве нефтехимического оборудования в технологических операциях по плакированию изделий коррозионно-стойкими слоями металла. Осуществляют двухэлектродную дуговую наплавку в среде защитных газов аргона и углекислого газа, взятых в соотношении 82:18 об.%. Используют две сварочные проволоки диаметром 1,2-2,5 мм, расположенные перпендикулярно направлению наплавки и имеющие общий токоподвод, подключённый к положительному полюсу источника сварочного тока. Межосевое расстоянии друг от друга пятикратно превышает диаметр проволоки. Силу сварочного тока определяют по формуле: I = 189d – 7d2, а напряжение на сварочной дуге – по формуле: Uд = 20 + 3d. За счет образования стабильной и общей для двух сварочных проволок сварочной дуги способ обеспечивает получение минимального проплавления основного металла, уменьшение перемешивания и получение требуемого химического состава наплавленного металла за меньшее количество проходов. 7 ил., 1 табл., 1 пр.

Изобретение может быть использовано при изготовлении плоских биметаллических заготовок из разнородных металлов, а именно из титана и алюминиево-магниевого сплава. На демпфирующее основание устанавливают последовательно неподвижную пластину из алюминиево-магниевого сплава, метаемую титановую пластину и заряд взрывчатого вещества с детонатором. Метаемая титановая пластина выполнена длиной и шириной больше неподвижной пластины и установлена на неподвижной пластине с зазором, высоту которого выбирают исходя из условия обеспечения доли кинетической энергии, затрачиваемой на пластическую деформацию материалов в зоне соединения 0,85-1,48 МДж/м2. Свариваемые поверхности пластин предварительно отшлифованы до шероховатости не более Ra=3,2. По периметру метаемой титановой пластины выполняют пазы глубиной не менее половины ее толщины с учетом её габаритов. При сварке их располагают над кромкой неподвижной пластины. Скорость детонации при сварке взрывом обеспечивают 2350-2450 м/с. Способ обеспечивает получение композиционных материалов высокого качества. 13 ил., 1 табл.

Изобретение относится к наплавочным материалам, в частности к порошковым и композиционным проволокам для дуговой наплавки. Композиционная проволока состоит из никелевой оболочки, внутри которой находятся проволочные компоненты из алюминия, вольфрама, молибдена, лента из тантала и порошкообразная шихта, содержащая хром и цирконий, а также микроразмерные порошки диборида титана и диоксида церия с размером частиц в диапазонах 10-30 мкм. Компоненты композиционной проволоки взяты в следующем соотношении, мас. %: никель 67-70, алюминий 10,5-12, хром 5,5-6,6, вольфрам 4,5-5,5, молибден 3,2-4,2, тантал 3,0-3,5, цирконий 1,3-1,8, диборид титана 0,45-0,8, диоксид церия 0,05-0,1. Проволока обеспечивает получение термо- и износостойкого наплавленного металла с высокой стойкостью к образованию трещин от повторного нагрева и трещин термической усталости в условиях циклического температурного воздействия в диапазоне температур 20-1150°С. 6 ил., 2 табл., 2 пр.

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к газоабразивному изнашиванию при нормальной и повышенных до 1000°С температурах. Установка содержит стойку, камеру и бункер для сбора отработанного абразива, установленные на стойке, тракт подачи абразива и тракт подачи воздуха, служащие входами в смеситель, расположенные в камере держатель и нагреватель образца, сопло подачи газоабразивной смеси и нагреватель газоабразивного потока. Нагреватель газоабразивного потока выполнен в виде плазмотрона, связанного с блоком управления и системой подачи плазмообразующих газов. Плазмотрон закреплен на держателе сопла, обеспечивающем плавную регулировку в трех плоскостях положения сопла и плазмотрона относительно образца. Нагреватель образца выполнен в виде двух медных водоохлаждаемых токоподводов, закрепленных в держателе образца и электрически изолированных от него, причем один из них выполнен неподвижным, а другой имеет возможность перемещаться и фиксироваться на направляющих, обеспечивая закрепление между токоподводами образцов различной длины и нагрев образцов проходящим через них током. Тракт подачи абразива в смеситель через дозатор соединен с баком, находящимся под избыточным давлением воздуха. Технический результат: расширение технологических возможностей, увеличение температурного диапазона испытаний от комнатной до 1000°С, а также повышение достоверности и воспроизводимости результатов испытаний за счет точного дозирования и однократного использования абразива. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при изготовлении сваркой взрывом биметаллических заготовок и переходных элементов, преимущественно из трудносвариваемых толстолистовых разнородных металлов. Метаемую пластину устанавливают над неподвижной пластиной с зазором и инициируют расположенный на ней заряд взрывчатого вещества. Одновременно с инициированием заряда к торцам неподвижной и метаемой пластин подают ультразвуковые колебания в направлении, противоположном направлению детонации. Между метаемой пластиной и зарядом располагают демпфирующую прослойку, состоящую из резиновой прокладки и слоя пенополипропилена. Толщина прослойки составляет 0,2-0,4 от толщины заряда. Изобретение обеспечивает увеличение прочности соединения, уменьшение количества оплавов и неметаллических включений, а также снижение расхода взрывчатых веществ. 3 ил., 2 табл.

Изобретение может быть использовано для изготовления взрывным прессованием композиционных многослойных деталей. На поверхности металлической подложки размещают титановый порошок. Затем формируют промежуточный слой из смеси порошков карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti , после чего наносят смесь порошков карбида кремния с титаном в соотношении 38-42 мас. % SiC и 58-62 мас. % Ti. Толщина промежуточного слоя равна 2,5-3,5 мм. Инициируют заряд взрывчатого вещества, расположенный над порошковым материалом, отделенный от него металлической пластиной. Нормально падающая детонационная волна уплотняет порошковый материал до практически беспористого состояния и создает условия для соединения компонентов между собой и со стальной подложкой. Технический результат заключается в увеличении прочности соединения покрытия с металлической подложкой. 2 ил., 2 табл., 3 пр.

Изобретение может быть использовано для изготовления и восстановления деталей и инструмента, работающих в условиях абразивного и других видов изнашивания. Электродуговую наплавку производят плавящимся электродом. В сварочную ванну подают под острым углом к направлению подачи плавящегося электрода электрически изолированную присадочную порошковую проволоку с наполнителем из ультрадисперсного порошка тугоплавкого химического соединения на расстоянии от плавящегося электрода, которое выбирают в зависимости от параметров режима наплавки и теплофизических свойств наплавленного металла. Присадочную проволоку вводят в сварочную ванну со скоростью, обеспечивающей содержание порошка тугоплавкого химического соединения в количестве 0,2…0,6% от массы наплавленного металла. Способ обеспечивает повышение механических и эксплуатационных свойств наплавленного металла за счет измельчения его структуры и формирования в ней упрочняющих твердых фаз. 2 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к нанесению покрытия из антифрикционного твердого сплава на металлическую подложку. На поверхность металлической подложки размещают порошковый материал, состоящий из слоев титанового порошка и смеси порошков карбида хрома и титана в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti, между слоем из титанового порошка и слоем из смеси порошков размещают промежуточный слой из смеси порошков карбида хрома и титана в соотношении 60 мас. % Cr3C2 и 40 мас. % Ti, при этом толщина последнего составляет 0,8-1,2 толщины слоя из титанового порошка. После инициируют заряд взрывчатого вещества, расположенный над порошковым материалом, отделенного от него металлической пластиной. Нормально падающая детонационная волна уплотняет порошковый материал до практически беспористого состояния и создает условия для соединения компонентов между собой и со стальной подложкой. Технический результат заключается в увеличении прочности соединения покрытия с металлической подложкой. 2 ил., 3 табл., 1 пр.

Изобретение может быть использовано для дуговой наплавки металлургического и другого инструмента, работающего в условиях интенсивного абразивного изнашивания при температурах до 600°С. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%: феррохром 24,0-26,0, ферромолибден 3,8-4,2, диборид титана 2,9-3,7, графит 1,3-3,3, никель 1,0-1,3, железный порошок 0,2-2,2, кремнефтористый натрий 0,8-1,0, ультрадисперсный порошок нитрида титана 0,25-0,60, стальная оболочка остальное. Металл, наплавленный порошковой проволокой с данным составом, обладает высокими значениями твердости и износостойкости, что позволяет повысить ресурс работы наплавленных деталей машин, оборудования и инструментов. 2 табл.

Изобретение относится к сварочным и наплавочным материалам и может быть использовано для получения наплавленного металла и сварных швов на низко-, средне- и высоколегированных сталях и сплавах. В качестве порошков тугоплавкого химического соединения используют тугоплавкие химические соединения переходных металлов, выбранных из IV, V и VI групп Периодической системы, с углеродом, азотом или бором в виде порошкообразной смеси, содержащей нано-, ультра- и микроразмерные частицы. Сначала смешивают упомянутую смесь порошков со смешивающим агентом в соотношении от 2,3:1 до 4:1, полученную смесь продавливают через сито с образованием гранул размером не менее 500 мкм, просушивают их при температуре 250-300°C с обеспечением сухого остатка смешивающего агента 7-14% от массы полученных гранул, затем гранулы смешивают со шлакообразующим компонентом в виде флюса с образованием гранул с размерами в интервале 0,25-1,6 мм в соотношении от 1:2,3 до 1:0,75, нагревают полученную смесь в течение 5-10 мин при температуре Тх, выбираемой из соотношения Ттк>Тх≥Тш+50°C, где Ттк - температура плавления тугоплавкого химического соединения переходных металлов; Тш - температура плавления шлакообразующего компонента, после чего охлаждают, а закристаллизовавшийся шлак измельчают и разделяют на фракции с размером 50-100 мкм. Изобретение позволяет создать модификатор, обеспечивающий при его плавлении в реакционной зоне сварки высокую степень сохранности нано-, ультра- и микроразмерных частиц тугоплавких химических соединений в микрогранулах модификатора, а также повысить стабильность существования сварочной дуги. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение может быть использовано в составе порошковых проволок, покрытых электродов и флюсов для сварки и наплавки. Модификатор содержит нанопорошок тугоплавкого соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид металла, в качестве инокулятора и протектор. В качестве протектора использован флюс, состоящий из смеси фторидов и хлоридов металлов, выбранных из группы, включающей натрий, кальций, калий, барий, литий и магний, а также связующего в виде силикатов металлов этой группы в количестве 7-13% от массы инокулятора. Модификатор содержит компоненты в следующем соотношении, мас.%: нанопорошок тугоплавкого соединения 30-50, флюс – остальное. Технический результат заключается в повышении механических и эксплуатационных свойств металла сварных швов и наплавленного металла за счет увеличения металлургической эффективности модификатора. 2 ил., 2 табл., 1 пр.

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к абразивному изнашиванию при нормальной и повышенных температурах. Установка содержит основание, на котором установлены привод вращения, вертикальный вал, контртело в виде плоского кольца с абразивной массой на его поверхности, держатель образца, закрепленный на механизме нагружения, и грузы. Держатель образца состоит из двух электрически изолированных друг от друга медных токоподводящих пластин, соединенных с источником тока. Кольцо закреплено на барабане с возможностью их вращения вокруг вертикального вала, жестко закрепленного на основании. Под кольцом расположен электрический нагреватель в виде ленты из материала с высоким электрическим сопротивлением, концы которой подключены к двум медным кольцевым шинам, расположенным на поверхности барабана и электрически изолированным от него. Кольцевые шины находятся в скользящем контакте с неподвижными токоподводящими узлами, подключенными к источнику тока, а кольцо и электрический нагреватель расположены в теплоизоляционном кожухе. Технический результат: расширение технологических возможностей и повышение достоверности результатов испытаний за счет реализации нагрева образца проходящим через него током до температур 1100°C, нагрева контр-тела и абразивной массы с помощью электрического нагревателя до температур 600°C. 2 з.п. ф-лы, 4 ил.

Изобретение относится к сварочной технике, а именно к конструкциям неплавящихся электродов для дуговой сварки, используемых например, в металлургии и химическом производстве для высокотемпературной обработки материалов. Изобретение позволяет повысить производительность сварки, снизить вероятность образования прожогов при сварке и улучшить формирование шва, за счет пространственной стабилизации дуги и увеличении максимального тока и скорости сварки. Это достигается тем, что в неплавящемся электроде для дуговой сварки, состоящем из цилиндрического корпуса и рабочего участка, в диаметральной плоскости рабочего участка по образующей выполнен радиальный паз под углом α<90º к оси, выходящий на торцевую поверхность электрода. 1 табл., 6 ил.

Изобретение может быть использовано при изготовлении биметаллических заготовок и переходных элементов преимущественно из разнородных металлов для электротехники, электрометаллургии, машиностроения и судостроения. Метаемую пластину устанавливают над неподвижной пластиной с зазором и инициируют расположенный на ней заряд взрывчатого вещества (ВВ). Одновременно с инициированием заряда к торцу неподвижной пластины подают ультразвуковые колебания в направлении, противоположном направлению детонации. Амплитуда колебаний составляет не более трех высот волн, образующихся в сварном соединении. Технический результат заключается в увеличении прочности соединения и уменьшении деформации биметаллических заготовок, а также в снижении расхода ВВ. 1 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

Изобретение относится к наплавочным материалам, в частности к порошковым проволокам для дуговой наплавки в защитных газах инструмента и деталей, работающих при больших удельных давлениях и повышенных температурах

Изобретение относится к сварочным и наплавочным материалам, в частности к композиционным проволокам, применяющимся в металлургическом, нефтехимическом, атомно-энергетическом и общем машиностроении, а также при производстве летательных аппаратов и может быть использовано для электродуговой наплавки сложнолегированных жаропрочных сплавов на основе алюминида никеля Ni3Аl

Изобретение относится к сварочным материалам, в частности к керамическим флюсам для механизированной наплавки и сварки низкоуглеродистых и низколегированных сталей

Изобретение относится к наплавочным материалам, в частности к порошковым проволокам, для электрошлаковой наплавки инструментов и изделий, работающих в условиях абразивного износа

Изобретение относится к области сварки взрывом и может быть использовано при изготовлении на открытом полигоне крупногабаритных биметаллических листов или заготовок коррозионно-стойкого биметалла (сталь - титан, сталь - латунь, сталь - алюминий, малоуглеродистая низколегированная сталь - коррозионно-стойкая сталь и др.) для химической, атомной и нефтегазовой отраслей промышленности

Изобретение относится к сварочным материалам, применяющимся в металлургическом, нефтехимическом и общем машиностроении, и может быть применено в процессах ручной дуговой сварки или наплавки для модифицирования наплавленного металла наноразмерными тугоплавкими частицами

Изобретение относится к наплавке и специальной электрометаллургии и может быть использовано для ремонта изношенных и изготовления наплавкой плоских поверхностей деталей машин и инструментов

Изобретение относится к способам воздействия на семена растений с целью изменения фено- и генотипических признаков растений и может быть использовано для эффективной защиты теплолюбивых растений гречихи от действия низких положительных температур

Изобретение относится к области аргонодуговой обработки сварных швов и зоны термического влияния для снижения остаточных сварочных напряжений

Изобретение относится к конструкции неплавящегося электрода для электрошлаковой наплавки или электрошлакового переплава

Изобретение относится к технологии нанесения покрытий сваркой взрывом и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении металлических конструкций, а также при аварийном ремонте днищ крупногабаритной техники (например, гусеничных вездеходов), восстановлении нарушенной герметичности крупногабаритных конструкций и др

Изобретение относится к технологии нанесения покрытий сваркой взрывом и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении металлических конструкций, а также при аварийном ремонте днищ крупногабаритной техники, восстановлении нарушенной герметичности крупногабаритных конструкций и др

Изобретение относится к технологии производства жидкого стекла, применяемого на предприятиях машиностроения, целлюлозно-бумажных фабриках, в строительной индустрии и т.п

Изобретение относится к технологии изготовления плоских биметаллических листов сваркой взрывом и может быть использовано в различных областях металлообрабатывающей промышленности, а также в энергетическом и химическом машиностроении, в частности при изготовлении трубных досок и трубных решеток

Изобретение относится к технологии получения сваркой взрывом крупногабаритных плоских биметаллических листов и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении крупногабаритных металлических конструкций

Изобретение относится к технологии изготовления плоских биметаллических листов сваркой взрывом и может быть использовано в различных областях металлообрабатывающей промышленности, а также в энергетическом и химическом машиностроении, в частности при изготовлении трубных досок и трубных решеток

Изобретение относится к технологии изготовления плоских биметаллических листов путем сварки взрывом и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении крупногабаритных металлических конструкций

Изобретение относится к технологии изготовления плоских биметаллических листов сваркой взрывом и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении крупногабаритных металлических конструкций

Изобретение относится к технологии изготовления биметалла путем сварки взрывом и может быть использовано в различных областях металлообрабатывающей промышленности и химического машиностроения при изготовлении крупногабаритных металлических конструкций

Изобретение относится к наплавке и сварке стальных изделий в среде защитных газов

Изобретение относится к средствам индивидуальной защиты и защиты боевой техники и гражданской спецтехники от поражения баллистическими инденторами (снарядами, пулями, осколками)

Изобретение относится к испытательной технике

Изобретение относится к наплавке, в частности к наплавочным материалам, и может быть использовано при изготовлении композиционных порошковых проволок

Изобретение относится к металлургии наплавки и специальной электрометаллургии и может быть использовано для ремонта изношенных и изготовления наплавкой крупногабаритных торцовых поверхностей деталей машин и инструментов

Изобретение относится к области сварки взрывом и предназначается для использования в переходных элементах токоподводящих узлов алюминиевого электролизера

 


Наверх