Патенты автора Белоногов Олег Борисович (RU)

Изобретение относится к области ракетостроения и может быть использовано для управления положением камер сгорания жидкостных ракетных двигателей. Система управления вектором тяги жидкостного ракетного двигателя содержит раму с карданным подвесом под установку жидкостного ракетного двигателя, два электромеханических привода, закрепленные на раме в двух взаимно перпендикулярных плоскостях, а также формирователь командного сигнала, электрически соединенный с двумя автономными вычислительными устройствами. Каждое автономное вычислительное устройство через свое усилительно-преобразовательное устройство и непосредственно соединено электрически со своим электромеханическим приводом. Валы электромеханических приводов соединены с камерой сгорания жидкостного ракетного двигателя посредством шарнирно-рычажных механизмов, выполненных из рычага и тяги, причем рычаг каждого шарнирно-рычажного механизма одним концом жестко закреплен на валу своего электромеханического привода, а вторым концом посредством шарикового сферического подшипника прикреплен к одному из концов тяги шарнирно-рычажного механизма, при этом одна тяга своим вторым концом посредством шарикового сферического подшипника прикреплена к проушине камеры сгорания жидкостного ракетного двигателя, а другая тяга своим вторым концом посредством шарикового сферического подшипника прикреплена к проушине внешней рамки карданного подвеса. Изобретение обеспечивает возможность использования системы управления вектором тяги с повышенной точностью слежения в условиях дальних полетов в космическом пространстве при длительном пребывании в условиях низких температур, в условиях воздействия вибраций и ударов, вырабатываемых жидкостным ракетным двигателем, может быть применено в пилотируемых и грузовых космических кораблях, разгонных блоках дальнего действия и в межорбитальных буксирах. 1 ил.

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например, для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД). Техническим результатом настоящего изобретения является снижение токопотребления электромеханического привода цифровой следящей электромеханической системы. Согласно способу управления цифровой электромеханической следящей системой преобразуют двоичный код Грея δг дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнивают командный двоичный код от формирователя командного кода δх с двоичным кодом обратной связи δу, формируют двоичный код рассогласования δр, сравнивают код рассогласования δр с заданными значениями кодов переключения режима управления электродвигателями δп2,…,δпn-1, δПn, причем n=2,3,…, и с заданной величиной кода точности поддержания требуемого положения δп1. При преобразуют код рассогласования δр в напряжение, соответствующей коду рассогласования δр полярности, усиливают его до значений напряжения питания и подают на n электродвигателей электромеханического привода, которыми приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении. По мере уменьшения значения кода рассогласования δр последовательно прекращают подачу на электродвигатели электромеханического привода напряжение питания и формируют в них токи торможения, чем осуществляют их динамическое торможение и приводят во вращение валы выключенных электродвигателей, вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении остальными электродвигателями. При совпадении кодов δx и δу с заданной точностью ±δп1, то есть формируют в последнем электродвигателе электромеханического привода ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение валов всех электродвигателей, останавливают вращение выходного вала редуктора и вала дискретного датчика угла электромеханического привода. Это позволяет повысить плавность процесса регулирования системы, при автоколебательных режимах ее работы, вызванных действием на выходной вал электромеханического привода значительных позиционных или постоянно действующих нагрузок, а также при работе в условиях действия вибраций и ударов за счет функционирования перед остановом только одного из электродвигателей. 1 ил.

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД). Техническим результатом настоящего изобретения является снижение токопотребления электромеханического привода цифровой следящей электромеханической системы пропорционально уменьшению напряжения питания электродвигателя. Согласно способу управления цифровой электромеханической следящей системой преобразуют двоичный код Грея δГ дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнивают командный двоичный код от формирователя командного кода δХ с двоичным кодом обратной связи δу, формируют двоичный код рассогласования δр, сравнивают код рассогласования δр с заданными значениями кодов переключения режима управления электродвигателями δп2, …, δпn-1, δпn, причем n=2, 3, …, и с заданной величиной кода точности поддержания требуемого положения δп1. При |δр|>δпn преобразуют код рассогласования δр в напряжение соответствующей коду рассогласования δр полярности, усиливают его до максимального значения и подают на электродвигатель электромеханического привода, приводящий во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении. По мере уменьшения значения кода рассогласования δр последовательно уменьшают подаваемое на электродвигатель электромеханического привода напряжение питания и приводят во вращение вал электродвигателя, вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом при пониженных значениях напряжения питания. При совпадении кодов δХ и δу с заданной точностью ±δп1, то есть |δр|≤δп1, прекращают подачу на электродвигатель электромеханического привода напряжения питания и формируют в нем ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала электродвигателя, вала редуктора и вала дискретного датчика угла электромеханического привода. Это позволяет повысить плавность процесса регулирования системы, при автоколебательных режимах ее работы, вызванных действием на выходной вал электромеханического привода значительных позиционных или постоянно действующих нагрузок, а также при работе в условиях действия вибраций и ударов за счет функционирования перед остановом только одного из электродвигателей. 1 ил.

Изобретение относится к области электротехники. Индуктивно-емкостной энергетический элемент содержит центральный слой гетерогенной субстанции. По внешней поверхности центрального слоя парно противоположно установлено четное количество других, отличных от центрального слоя и друг от друга слоев гетерогенных субстанций, при этом все слои гетерогенных субстанций являются проницаемыми для электромагнитного излучения. Между центральным слоем и другими слоями помещены поляризующие прослойки, причем у поляризующих прослоек, помещенных между центральным и слоями, парно противоположно размещенных относительно центрального слоя, плоскости поляризации совпадают. Толщина центрального и других слоев равна или больше удвоенной длины волны электромагнитного излучения. В центральный слой помещен проводник, с обоих концов закрученный в спираль, центральная часть которого имеет плоский участок, расположенный в центре спирали так, что ось спирали перпендикулярна плоскости участка, а его максимальный размер не превышает внутреннего диаметра спирали, при этом в серединах боковых сторон плоского участка выполнены контакты, выходящие за границы гетерогенных субстанций, а начало и конец проводника, с обоих концов закрученного в спираль, замкнуты перемычкой или емкостью. Технический результат заключается в увеличении полосы пропускания. 2 н.п. ф-лы, 3 ил.

Струйный диод предназначен для использования в струйной гидро- и пневмотехнике. Струйный диод содержит корпус со штуцерами входа и выхода, отверстия которых сообщаются с концами выполненного в корпусе главного канала спиральной формы. По руслу главного канала спиральной формы выполнены один или более дополнительных криволинейных каналов, которые сообщены своими концами с соседними орбитами главного канала спиральной формы. При движении потока жидкости или газа от штуцера выхода к штуцеру входа через отверстия в них по главному каналу спиральной формы происходит многократное взаимодействие потока в нем с встречно-направленными потоками дополнительных криволинейных каналов, движущихся от более высоких орбит главного канала спиральной формы к более низким, за счет чего сопротивление потоку возрастает. Техническим результатом изобретения является повышение функциональных возможностей струйного диода и его встраиваемости в гидравлические и пневматические агрегаты. 2 ил.

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е. до тех пор, пока относительные разности между вновь вычисленными средними значениями коэффициентов Фурье выходного сигнала и предыдущими значениями этих параметров не станут по модулю меньше наперед заданного точностного параметра. При этом анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится по нескольким дополнительным гармоникам. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Технический результат - повышение точности определения амплитудно-фазовых частотных характеристик. 1 ил.

Изобретение относится к электрическим генераторам, преобразующим энергию внешнего переменного магнитного (электромагнитного) поля в электрическую энергию, и может быть применен в производстве альтернативных энергетических установок длительного пользования

Изобретение относится к ветроэнергетике и может быть использовано для получения механической, электрической или тепловой энергии за счет преобразования энергии ветрового потока

Изобретение относится к электротехнике, к устройствам, преобразующим внешние электромагнитные излучения с целью получения электрической энергии

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов

Изобретение относится к устройствам, воздействующим на электромагнитные излучения (поля) для управления ими, и может быть использовано при создании источников и преобразователей энергии

Изобретение относится к области электрогидромеханики

Изобретение относится к устройствам, преобразующим энергию ядерного распада в электрическую энергию, и может быть использовано в производстве компактных источников электрического тока длительного пользования

Изобретение относится к устройствам, преобразующим теллурическую энергию земной коры в электрический ток

Изобретение относится к преобразователям энергии электромагнитного светового излучения в электрическую энергию и может быть использовано в производстве фотоэлементов, в том числе солнечных фотоэлементов

Изобретение относится к области электротехники, в частности к генератору электрического тока, работающему на потоке плазмы, и может быть использовано для получения электрического тока и питания им систем и агрегатов спускаемых аппаратов космических кораблей

Изобретение относится к ракетной технике, в частности к устройствам управления

Изобретение относится к области электротехники и может быть использовано в ракетно-космической технике, отраслях электроэнергетики и в быту

Изобретение относится к области ракетно-космической техники и может быть использовано в отраслях электроэнергетики и в быту

Изобретение относится к гидроавтоматике и может быть использовано для определения углов истечения потоков рабочей жидкости в сечениях дроссельных окон золотниковых гидрораспределителей, используемых для расчетов гидродинамических сил, действующих на золотниковые плунжеры в процессе функционирования

Изобретение относится к области электрогидромеханики и может быть использовано в ракетостроении, самолетостроении и судостроении

Изобретение относится к электротехнике и может быть использовано в ракетно-космической технике, отраслях электроэнергетики и в быту

Изобретение относится к гидравлическим приводам и рулевым машинам

Изобретение относится к гидроавтоматике и может быть использовано для определения характеристик безразмерных параметров течения потоков рабочей жидкости в дроссельных окнах золотниковых гидрораспределителей, под которыми подразумеваются используемые в процессе расчетов при проектировании указанных устройств зависимости коэффициента расхода и коэффициента сжатия потока от числа Рейнольдса Re при разных уровнях относительного противодавления

Изобретение относится к гидроавтоматике и может быть использовано для определения характеристик безразмерных параметров течения потоков рабочей жидкости в гидрораспределителях сопло-заслонка, под которыми подразумеваются используемые в процессе расчетов при проектировании гидрораспределителей зависимости коэффициента расхода и коэффициента сжатия потока в зазоре между соплом и заслонкой от числа Рейнольдса Re при разных уровнях относительного противодавления на сливе

 


Наверх