Патенты автора Оспенникова Ольга Геннадиевна (RU)

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере. При этом осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения. Нагрев подложки осуществляют в течение 30-60 мин. При использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона. Обеспечивается сокращение массы деталей, повышение их тяговооруженности МГТД. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей газотурбинных двигателей методом аддитивного производства содержит, мас.%: хром 25-27, вольфрам 10-12, никель 7-10, углерод 0,1-0,3, тантал 3-6, титан 0,10-0,2, цирконий 0,01-0,05, магний 0,03-0,08, бор 0,003-0,01, иттрий 0,05-0,3, лантан 0,03-0,1, церий 0,01-0,05, кобальт и вредные вещества, в том числе кислород – остальное. Отношение суммарного атомного содержания карбидообразующих элементов W, Та, Zr, Ti к атомному содержанию углерода в сплаве составляет 3-7. Сплав предназначен для изготовления изделий методом аддитивных технологий, в частности методом селективного лазерного сплавления из металлопорошковой композиции. Сплав характеризуется повышенными механическими характеристиками, высокой пластичностью при комнатной температуре и высокой длительной прочностью и жаростойкостью при рабочей температуре 1100°С. 1 з.п. ф-лы, 4 табл.

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0; титан 1,5-3,0; вольфрам 8,0-13,0; ниобий 0,5-1,25; алюминий 4,0-6,0; бор до 0,05; цирконий до 0,05; гафний 1,0-2,0; по меньшей мере один элемент из группы: иттрий, лантан и гадолиний до 0,10; по меньшей мере один элемент из группы: церий, празеодим и неодим до 0,10; по меньшей мере один элемент из группы: магний, кальций и барий до 0,10; никель - остальное. Обеспечивается повышение длительной прочности при температурах 900-1000°C с одновременным повышением стойкости к газовой коррозии, а также повышение структурной стабильности сплава на ресурс. 2 н.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок. Жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,05-0,15, хром 11,9-12,7, кобальт 10,0-12,0, вольфрам 4,0-5,2, молибден 1,5-2,1, титан 3,2-4,2, алюминий 3,2-4,0, тантал 1,5-2,9, бор 0,001-0,015, цирконий 0,008-0,08, церий 0,002-0,02, иттрий 0,002-0,02, лантан 0,002-0,02, кальций 0,001-0,01, никель - остальное. Сплав характеризуется высокими значениями длительной прочности, коррозионной стойкости, а также высокой фазовой стабильностью и снижением объемной доли выделений неравновесных фаз. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области нанесения ионно-плазменных покрытий, а именно к устройству и способу нанесения защитных покрытий. Устройство содержит по меньшей мере одну пару расположенных напротив друг друга вакуумно-дуговых испарителей с общим электроизолированным анодом для каждой пары и одну пару газоразрядных источников ионов, образующих кольцевую зону обработки изделий. Каждый испаритель выполнен с возможностью перемещения вдоль их оси расположения. Электроизолированный держатель обрабатываемых изделий выполнен в виде первого вала вращения, размещенного на оси кольцевой зоны обработки изделий, и второго вала вращения. Первый вал вращения коаксиально охвачен внешним валом, второй вал вращения и внешний соединены посредством передаточного механизма импульса вращения с первого вала вращения на второй вал вращения. Второй вал вращения имеет возможность перемещения вдоль радиуса кольцевой зоны обработки изделий и вокруг первого вала вращения. Положительный полюс источника смещения с электронным ключом подключен к корпусу вакуумной камеры. Технический результат заключается в обеспечении возможности нанесения на изделия с криволинейной поверхностью, в том числе лопатки турбин, блинки, блиски и сопловые блоки газотурбинных двигателей, различных габаритов, защитных и защитных упрочняющих покрытий из плазмы с высокой равномерностью толщины при снижении энергозатрат, а также в повышении производительности процесса нанесения покрытий и упрощении конструкции устройства. 2 н. и 6 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано для изготовления высоконагруженных роторных деталей, работающих при температурах до 650-700°С в газотурбинных двигателях. Жаропрочный никелевый сплав содержит, мас. %: углерод 0,08-0,15; хром 10,5-12,5; кобальт 14,0-16,0; вольфрам 4,0-6,0; молибден 2,6-3,6; титан 2,5-3,5; алюминий 3,6-4,6; ниобий 3,0-4,0; тантал 0,1-1,3; гафний 0,05-0,2; ванадий 0,1-0,5; бор 0,005-0,05; цирконий 0,001-0,05; церий 0,001-0,05; скандий 0,01-0,1; магний 0,001-0,05; остальное - никель и неизбежные примеси. Сплав имеет высокую прочность и жаропрочность, обладает высоким сопротивлением малоцикловой усталости. 2 н. и 4 з.п. ф-лы, 2 табл.

Изобретение относится к области очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений. Выдержку деталей осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от 0,5 до 2 г/л нитрата натрия или от 0,2 до 0,5 г/л сульфата натрия, после выдержки в водном растворе щелочи проводят очистку деталей топливного коллектора в растворе ортофосфорной кислоты с концентрацией от 50 до 150 г/л при температуре от 80 до 105°C, причем выдержку в водном растворе щелочи, очистку деталей топливного коллектора в растворе ортофосфорной кислоты, промывку в воде и продувку сжатым воздухом проводят по меньшей мере два раза. Технический результат - повышение эффективности и снижение длительности очистки деталей топливного коллектора газотурбинного двигателя, а также снижение энергозатрат. 3 ил.

Изобретение может быть использовано для изготовления биметаллического изделия, выполненного из литого интерметаллидного сплава на основе Ni3Al и дисперсионно-твердеющего никелевого сплава. Способ включает стадию образования между заготовками биметалла физического контакта за счет деформации заготовки из никелевого сплава с получением полуфабриката и стадию активации и схватывания контактных поверхностей заготовок за счет деформации части полуфабриката из никелевого сплава. Деформацию заготовки из никелевого сплава на стадии физического контакта осуществляют со скоростью при температуре T1, которые выбирают в соответствии с размером зерен d упомянутого сплава в интервалах сверхпластичности. Деформацию указанной части полуфабриката на стадии активации и схватывания осуществляют со скоростью деформации при температуре Т2, которую выбирают из условия ТСП>Т2>Т*, где ТСП - наименьшая температура сверхпластичности никелевого сплава с размером зерен d, Т* - температура, при которой напряжения течения никелевого сплава с размером зерен d и интерметаллидного сплава равны между собой. Проводят термическую обработку полученного полуфабриката биметаллического изделия. Способ обеспечивает повышение степени активации и схватывания контактных поверхностей заготовок в процессе соединения давлением. 6 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области порошковой металлургии, а именно к магнитотвердому материалу, содержащему железо, кобальт, бор, диспрозий, медь. При этом материал дополнительно содержит цирконий. Химический состав магнитного материала соответствует формуле, ат. доли: (Pr1-x1Dyx1)12-15(Fe1-y1Coy1)ост.(ZrzCu1-z)y2B6-7, где x1=0,44-0,48; y1=0,30-0,36; y2=1,0-2,0; z=0,005-0,05. Также предложено изделие из магнитотвердого материала. Техническим результатом изобретения является увеличение остаточной индукции материала при сохранении значения температурного коэффициента индукции. 2 н.п. ф-лы, 1 табл.

Изобретение относится к области металлургии и может быть использовано при получении магнитотвердого материала на основе системы редкоземельный металл-железо-кобальт-бор, который используют при изготовлении магнитов для создания навигационных приборов. В способе осуществляют загрузку железа и кобальта в плавильный тигель и их расплавление в вакууме, введение легирующих элементов в расплав, разливку расплава в форму и охлаждение отливки. При этом рабочий слой плавильного тигля содержит по меньшей мере один из оксидов магния, иттрия, гафния, скандия или циркония, после расплавления в вакууме в расплав вводят бор, далее в вакууме вводят в расплав по меньшей мере один редкоземельный металл, выбранный из группы: празеодим, гадолиний, неодим, церий, затем в атмосфере инертного газа вводят в расплав по меньшей мере один редкоземельный металл, выбранный из группы: диспрозий, самарий. Изобретение позволяет получить магнитотвердый материал системы РЗМ-Fe-Co-B со стабильным химическим составом, равномерным распределением легирующих элементов по всему объему слитка и высокой чистотой по примесям алюминия и кислорода. 6 з.п. ф-лы, 2 пр. 4 табл.

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный материал, содержащий празеодим, железо, кобальт, бор, медь и по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий, отличающийся тем, что он дополнительно содержит олово, при этом химический состав магнитного материала соответствует формуле в ат. долях: где R - по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий; x1=0,01-0,50; у1=0,30-0,55; у2=0,5-2,0; z=0,001-0,1. Магнитный материал обеспечивает повышение значения остаточной магнитной индукции BR при величине температурного коэффициента индукции (ТКИ), близкой к нулю, а также увеличение выхода годных изделий - кольцевых магнитов с радиальной текстурой (КМРТ), выполненных из данного материала, что является техническим результатом изобретения. 2 н.п. ф-лы. 1 табл.

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки. Способ включает получение по меньшей мере двух заготовок компонентов ротора из высокопрочного деформируемого никелевого сплава, предварительную термическую обработку заготовок, их соединение посредством электронно-лучевой сварки с формированием сварного шва и окончательную термическую обработку сварной конструкции ротора. Формирование сварного шва производят путем перемещения свариваемых заготовок относительно источника излучения со скоростью 5-30 м/ч, заготовки компонентов ротора получают из жаропрочного деформируемого никелевого сплава, содержащего, мас.%: углерод 0,05-0,07, хром 14-16, кобальт 15-17, молибден 4,5-5, вольфрам 1-1,8, ниобий 4,2-4,7, суммарное содержание алюминия и титана 2,5-3, цирконий 0,5-0,8, бор 0,001-0,003, магний 0,01-0,03, лантан 0,01-0,03 и неизбежные примеси и никель - остальное. Техническим результатом настоящего изобретения является обеспечение работоспособности конструкции ротора при температуре до 750°C, повышение надежности сварных соединений, повышение прочности сварного шва и основного металла заготовок. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный материал на основе ниобия, упрочненный силицидами ниобия, содержит, ат.%: кремний 15,0-17,0; титан 12,0-16,0; гафний 2,5-5,5; алюминий 2,0-4,0; хром 3,0-5,0; цирконий 4,0-6,0; молибден 8,0-12,0; иттрий 0,5-2,0; ниобий - остальное. Композиционный материал может содержать силицид ниобия Nb5Si3 и/или силицид ниобия Nb3Si. Материал характеризуется повышенными значениями кратковременной прочности. 2 н. и 3 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное. Изделие, выполненное из заявленного сплава, может иметь поликристаллическую или монокристаллическую структуру. Технический результат - повышение характеристик фазовой стабильности, повышение длительной прочности и пластичности. 2 н. и 1 з.п. ф-лы., 2 табл., 1 пр.
Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида Ni3 Аl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для производства методом направленной кристаллизации деталей высокотемпературных газовых турбин ГТД и ГТУ, преимущественно монокристаллических лопаток и других элементов горячего тракта турбины

Изобретение относится к металлургии сплавов, в частности к производству никелевых жаропрочных сплавов с поликристаллической равноосной структурой и изготовлению из них деталей газотурбинных двигателей, например сопловых и рабочих лопаток газовых турбин и роторов
Изобретение относится к области металлургии и машиностроения, а именно к изготовлению ротора конструкции «блиск», выполненного из жаропрочных никелевых сплавов и предназначенного для перспективных ГТД
Изобретение относится к области ремонта, в частности к ремонту лопаток турбин газотурбинных двигателей химико-термическими методами, и может быть использовано в областях техники, где используются газотурбинные двигатели

Изобретение относится к машиностроению, в частности к защите поверхности при ремонте охлаждаемых и неохлаждаемых лопаток стационарных энергетических установок авиационных газотурбинных двигателей методом горячего изостатического прессования

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах
Изобретение относится к металлургии и может быть использовано для изготовления деталей, например рабочих лопаток газотурбинных двигателей (ГТД)
Изобретение относится к очистке деталей газотурбинных двигателей из никелевых жаропрочных сплавов и может быть использовано в авиадвигателестроении, энергетике и других областях техники, где используются ГТД, и при ремонте
Изобретение относится к области металлургии и машиностроения
Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных газотурбинных двигателях, авиационных газотурбинных двигателях и газоперекачивающих установках, работающих в условиях длительного температурного воздействия в агрессивных средах, например, при использовании в качестве топлива природного газа, содержащего соединения серы
Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С
Изобретение относится к металлургии, в частности к способам упрочнения жаростойких покрытий деталей из жаропрочных никелевых сплавов, и может быть использовано для увеличения прочности и долговечности лопаток турбин газотурбинных двигателей

Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах

Изобретение относится к области химико-термической обработки, а именно к способам нанесения покрытий на жаропрочные сплавы на основе никеля и может использоваться для защиты деталей от солевой коррозии
Изобретение относится к области химико-термической обработки, а именно к способам диффузионного насыщения деталей, изготовленных из жаропрочных сплавов на основе никеля, применяемых для работы в условиях воздействия агрессивной газовой среды при температурах 700-1100°С

Изобретение относится к металлургии и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей и других узлов и деталей, работающих в диапазоне температур до 1000°С
Изобретение относится к области металлургии

Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений

Изобретение относится к металлургии и может найти применение в авиационной промышленности, энергетике и других отраслях промышленности, связанных с газотурбостроением

Изобретение относится к очистке изделий от коксовых отложений и нагара, в частности к очистке топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, судостроении, энергетическом машиностроении и других отраслях промышленности
Изобретение относится к металлургии, в частности к изготовлению литых заготовок на никелевой основе с равноосной или монокристаллической структурой

Изобретение относится к изготовлению огнеупорных красок для изделий с температурой обжига до 1600°С и может быть использовано для маркировки

Изобретение относится к области литейного производства и может быть использовано при изготовлении литейных керамических форм по выплавляемым моделям, например, для литья изделий из жаропрочных сплавов, в том числе и в вакууме

Изобретение относится к металлургии - изготовлению керамических оболочковых форм для точного литья металлов по выплавляемым моделям, и может быть использовано для экспресс-контроля связующего оболочковых форм - определение методом эксклюзионной хроматографии молекулярно-массового распределения (ММР) олигомеров этоксисилоксанов в гидролизованных и негидролизованных этилсиликатах

 


Наверх