Патенты автора Василевский Владимир Павлович (RU)

Группа изобретений относится к мембранным технологиям, а именно к области получения пористых полимерных плоских и половолоконных мембран. По всем вариантам осуществления группы изобретений предварительно готовят полимерный раствор и измеряют время осаждения путем контакта раствора и осадителя в диффузионной ячейке между двумя параллельными прозрачными пластинами. Способ по первому варианту получения полимерной мембраны включает приготовление полимерного раствора того же состава, нанесение полимерного раствора на подложку, формование мокрым способом путем погружения подложки в осадительную ванну, содержащую осадитель, отмывку, сушку мембраны или выдерживание в ванне кондиционирования. Оптимальное время нахождения подложки в осадительной ванне, tнахожд в осад. ванне, с, выбирают равным времени осаждения, tосаждения, с), полимерного слоя: Способ получения полимерной мембраны по второму варианту включает приготовление полимерного раствора того же состава, сухо-мокрое формование из полимерного раствора через фильеры полого волокна, отмывку, сушку мембраны или выдерживание в ванне кондиционирования. Давление над полимерным раствором, Δр, Па, и воздушный зазор над осадительной ванной, tвозд.зазора, м, выбирают так, что соотношение между ними соответствует формуле: где tocaждения - время осаждения полимерного раствора определенной толщины, с; hп.слоя - толщина полимерного слоя, м, rвнут.в. - внутренний радиус волокна, м; К - коэффициент, определяемый как где Rвнеш. ф. - внешний радиус фильеры, м; rвнут ф. - внутренний радиус фильеры, м; η - коэффициент динамической вязкости, Па⋅с; - длина трубки в кольцевой фильере, м. Способ получения полимерной мембраны по третьему варианту включает приготовление полимерного раствора того же состава, мокрое формование из полимерного раствора через фильеры полого волокна, отмывку, сушку мембраны или выдерживание в ванне кондиционирования. Давление над полимерным раствором и длину пути в осадительной ванне выбирают по указанным выше формулам. Группа изобретений позволяет использовать малые количества полимерного раствора и сократить количество стадий исследования для определения оптимальных параметров формования (давления над полимерным раствором, длины пути в осадительной ванне или величины воздушного зазора), возможность уменьшить расход дорогостоящих реагентов. 3 н.п. ф-лы, 1 ил., 6 табл., 11 пр.

Изобретение относится к дистилляционному модулю для концентрирования и опреснения водного раствора, включающему камеру с теплоносителем, одна стенка которой представляет собой поверхность испарения, камеру конденсации с хладагентом, одна стенка которой представляет собой пористую поверхность конденсации паров с воздушным зазором между поверхностью испарения и пористой поверхностью конденсации паров, и присоединенный к камере конденсации контур циркуляции хладагента с насосом. Модуль характеризуется тем, что поверхность испарения выполнена в виде сплошной подогреваемой стенки с устройством орошения ее со стороны зазора исходным водным раствором, пористая поверхность конденсации паров - в виде пористой пластины, а насос расположен после камеры конденсации. Также изобретение относится к способу концентрирования и опреснения водного раствора. Технический результат - снижение загрязнения и засорения мембраны при простоте и экономичности опреснения и концентрирования водных растворов. 2 н. и 2 з.п. ф-лы, 1 ил., 8 табл., 8 пр.

Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для ультрафильтрации водных сред заключается в том, что предварительно определяют порог отсечения исходной мембраны и с учетом характеристик отделяемых загрязнителей и материала, из которого выполнена исходная мембрана, задают требуемый порог отсечения, затем в зависимости от характеристик исходной мембраны осуществляют выбор модификатора из анизотропных дисперсных материалов, выбранных из группы: нанофибриллярная целлюлоза, нанотрубки галлуазита, нанокристаллическая целлюлоза с размером частиц, соответствующих достижению заданного порога отсечения, причем выбранный модификатор подвергают химической обработке до получения значения дзета-потенциала, соответствующего заданному порогу отсечения, при этом в случае использования в качестве модификатора нанофибриллярной целлюлозы водную дисперсию нанофибриллярной целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-65 мас.% и пероксидом водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанотрубок галлуазита водную дисперсию галлуазита смешивают с водным раствором полимера с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанотрубок галлуазита от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанокристаллической целлюлозы водную дисперсию нанокристаллической целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-80 мас.% и пероксида водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанокристаллической целлюлозы от минус 36 до минус 200 мВ, после чего исходную мембрану помещают в водную среду и проводят гидрофилизацию исходной мембраны путем подачи на ее рабочую поверхность дисперсии выбранного и обработанного одним из соответствующих вышеуказанных способов модификатора с образованием гидрофильного слоя на рабочей поверхности мембраны в процессе фильтрации дисперсии модификатора сквозь стенку мембраны. Достигаемый технический результат заключается в обеспечении формирования в ходе модификации мембраны гидрофильного разделительного слоя на рабочей поверхности мембраны с регулируемыми удельным зарядом и ориентацией анизотропных дисперсных частиц модификатора, что обеспечивает высокие барьерные свойства образующегося при самосборке заряженных частиц модификатора гидрофильного разделительного слоя. 2 ил., 7 пр.
Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов. Способ получения мембран для ультрафильтрации водных сред, заключающийся в том, что формование пористой полимерной мембраны осуществляют посредством использования двухканальной фильеры с концентрическим расположением каналов путем пропускания через центральный канал фильеры осадителя с одновременной подачей через кольцеобразный канал формовочного раствора, содержащего от 10 до 24 мас.% полимера, от 0 до 40 мас.% порообразователя и от 50 до 90 мас.% растворителя с образованием полой полимерной трубки, которую по мере формования подают в емкость с осадителем с образованием полимерного полого волокна, которое подвергают растяжению до достижения заданного значения постфильерной вытяжки, после чего волокно помещают в водную среду и проводят гидрофилизацию полученного полого полимерного волокна путем подачи в полость полимерного волокна дисперсии наноразмерных частиц целлюлозы в виде волокон нанофибриллярной целлюлозы с диаметром волокон менее 100 нм и длиной волокон менее 10 мкм или в виде кристаллов нанокристаллической целлюлозы с диаметром кристаллов менее 10 нм и длиной кристаллов менее 500 нм с образованием гидрофильного слоя в полости мембраны в процессе фильтрации дисперсии наноразмерных частиц целлюлозы сквозь стенку полого волокна. Технический результат - корректировка режима получения мембран за счет регулирования утончения стенки полого волокна в процессе формования мембран, вследствие чего обеспечивается возможность образования селективного гидрофильного слоя на рабочей поверхности мембран с сохранением высокой производительности. 1 з.п. ф-лы.

Изобретение относится к области очистки от диоксида углерода различных газовых смесей, таких как природный газ, газы конверсии углеводородов, дымовые газы и др. методом абсорбции. Способ удаления диоксида углерода из газовых смесей включает абсорбцию диоксида углерода водным раствором абсорбента с содержанием моноэтаноламина (МЭА) 10-14% мас. при степени насыщения абсорбционного раствора не менее 0,65 МCO2/ММЭА, десорбцию диоксида углерода при температуре 70-90°C с получением диоксида углерода и обедненного диоксидом углерода раствора абсорбента, который возвращают на стадию абсорбции полностью без дополнительной очистки. Технический результат - минимизация потерь МЭА, связанных с высокотемпературной деградацией, снижение коррозии оборудования, расхода тепла и повышение степени удаления диоксида углерода. 1 табл., 1 пр., 2 ил.

Изобретение относится к области разделения или концентрирования водных растворов различных веществ, в частности получения пресной воды из солоноватых или морских вод методом мембранной дистилляции, и может быть использовано для создания малогабаритных и малоэнергоемких опреснителей коллективного пользования, например, для маломерных морских судов. Мембранный дистилляционный модуль с воздушным зазором для опреснения минерализованной воды с общим содержанием минеральных солей от 5 до 60 г/л для оснащения аппаратов мембранной дистилляции включает расположенные в корпусе модуля разделительную мембрану, охлаждаемую перегородку для конденсации прошедших через мембрану паров, напорную камеру для подачи исходного опресняемого потока, образуемую напорной стороной мембраны и стенкой корпуса, воздушный зазор, образуемый обратной стороной мембраны и поверхностью перегородки, камеру, образованную перегородкой и стенкой корпуса, патрубок вывода пресной воды и циркуляционный контур. Камера, образованная охлаждаемой перегородкой и стенкой корпуса, является камерой конденсации прошедших через разделительную мембрану и пористую охлаждаемую перегородку паров. Патрубок вывода пресной воды встроен в трубопровод циркуляционного контура перед камерой конденсации. Модуль выполнен с возможностью вертикальной и горизонтальной ориентаций. Предпочтительно охлаждаемая пористая перегородка выполнена из пористой нержавеющей стали, или пористого титана, или пористых пластин полимерных материалов, или пористых керамических пластин. Предпочтительно расстояние между обратной стороной разделительной мембраны и охлаждаемой пористой перегородкой составляет менее 1,0 мм. Способ опреснения минерализованной воды с применением этого модуля включает подачу в него минерализованной воды, осуществление мембранной дистилляции, вывод части потока охлажденного конденсата как пресной воды и циркуляцию другой части указанного потока через камеру конденсации. Технический результат - снижение сопротивления тепломассопереносу в воздушном зазоре, повышение устойчивости работы модуля и обеспечение его эффективной работы при вертикальной или горизонтальной ориентации. 2 н. и 4 з.п. ф-лы, 5 ил., 11 табл., 11 пр.

Изобретение относится области разделения жидких смесей и может применяться в различных отраслях промышленности и сельского хозяйства. Способ выделения и концентрирования органических веществ термоградиентным первапорационным разделением жидких смесей через мембрану с помощью устройства, содержащего емкости с разделяемой смесью и хладагентом, термопервапорационный модуль, содержащий проточную камеру с разделяемой смесью, ограниченную с одной стороны селективной по целевому компоненту мембраной, проточную камеру с хладагентом, ограниченную с одной стороны твердой поверхностью конденсации, камеру конденсации, расположенную между мембраной и поверхностью конденсации, проходящих через термопервапорационный модуль, содержащих целевой компонент, и насосы для циркуляции разделяемой смеси и хладагента между соответствующими емкостями и термопервапорационным модулем. В качестве поверхности конденсации пермеата используют пористую перегородку, при этом насос для циркуляции хладагента размещен после термопервапорационного модуля. Изобретение обеспечивает выделение и концентрирование органических веществ из жидких смесей в отсутствии вакуума при увеличении потока пермеата и фактора разделения по целевому веществу. 2 н. и 1 з.п. ф-лы, 7 табл., 36 пр., 2 ил.

Изобретение относится к области композиционных мембран, предназначенных для использования в контакторах газ-жидкость, в которых реализуются процессы абсорбции и/или десорбции газов, и касается композиционной мембраны на основе высокопроницаемых стеклообразных полимеров

Изобретение относится к обработке солоноватых вод повышенного (5-10 г/л) солесодержания, а также вод с высокой концентрацией солей жесткости (>15 мг-экв/л), и может быть использовано в регионах поливного земледелия с дефицитом пресной воды для орошения, для возделывания сельскохозяйственных культур в системах защищенного грунта

 


Наверх