Композиционная мембрана на основе высокопроницаемых стеклообразных полимеров

Изобретение относится к области композиционных мембран, предназначенных для использования в контакторах газ-жидкость, в которых реализуются процессы абсорбции и/или десорбции газов, и касается композиционной мембраны на основе высокопроницаемых стеклообразных полимеров. Мембрана состоит минимум из трех слоев: пористой подложки со средним диаметром пор 0,15-0,45 мкм, контактирующего с ней промежуточного слоя из стеклообразного полимера с температурой стеклования 140-440°С и газопроницаемостью по CO2 от 3000 Баррер, устраняющего дефекты подложки и выполняющий функцию адгезионного слоя для нанесения следующего, и селективного слоя, контактирующего с промежуточным слоем, выполненного из стеклообразного полимера с той же температурой стеклования и газопроницаемостью по CO2 от 6000 Баррер. Изобретение повышает производительность мембраны и обеспечивает химическую стойкость ее пористой подложки. 13 з.п. ф-лы, 1 ил., 14 табл., 10 пр.

 

Изобретение относится к области композиционных мембран, предназначенных для использования в контакторах газ-жидкость, в которых реализуются процессы абсорбции и/или десорбции газов, таких как, например, оксиды углерода, серы, азота, а также сероводород, жидкими абсорбентами (такими как, например, водные растворы алканоламинов с различной степенью замещения атома азота, аминокислоты, неорганические соли, а также ионные жидкости), в процессах концентрирования органических соединений (таких как, например, спирты, альдегиды, ароматические соединения и др.) из водных сред, а также при выделении целевых компонентов (например, с молекулярной массой 500-600 г/моль и выше) из органических сред.

В последнее десятилетие для этих процессов активно разрабатываются мембранные контакторы (абсорберы и десорберы), способные заменить крупногабаритные емкостные массообменные аппараты насадочного или тарельчатого типа, которые применяются в настоящее время для реализации процессов абсорбции и десорбции (Очистка технологических газов. Под ред. Семеновой Т.А. и Лейтеса И.Л. - М.: Химия, 1976). Основным рабочим элементом таких контакторов является мембрана, назначение которой состоит в том, чтобы разделить газовый и жидкостной потоки и при этом обеспечить перенос абсорбируемого газа в абсорбент (стадия абсорбции) и (или) удаление абсорбированного газа из абсорбента (стадия десорбции). Производительность таких мембран по обрабатываемому газу (например, диоксиду углерода) должна быть в интервале 20-60 м32·ч·атм, предпочтительно 30-50 м32·ч·атм, чтобы реализовать главное преимущество мембранных контакторов - компактность в сочетании с высокой производительностью и отсутствием прямого контакта жидкой и газовой фаз. Кроме того, указанная мембрана должна быть химически устойчива к воздействию компонентов, входящих в составы абсорбентов, при температурах до 120°С и сохранять механическую прочность при давлениях до 100 атм.

Известна композиционная половолоконная мембрана на основе поли[1-(триметилсилил)-1-пропин]а (ПТМСП)[US Patent №7591878 В2, 09.22.2009]. Мембрана состоит из пористой подложки в виде полипропиленовых или керамических полых волокон, на которые нанесена асимметричная мембрана методом погружения половолоконной пористой мембраны в раствор ПТМСП в изопропиловом спирте с последующим осаждением в этаноле и сушкой. Мембрана на основе полипропиленовой подложки имеет максимальную производительность по CO2 - 19,3 и по N2 - 5,8 м32·ч·атм и исключает течение раствора абсорбента при давлениях жидкости до 37 атм из жидкой фазы в газовую. Расчетная толщина разделительного слоя - около 4 мкм.

Недостатком этой композиционной мембраны является невысокая проницаемость по диоксиду углерода.

Известны также другие композиционные мембраны, в которых наряду с различными полимерными материалами в качестве селективного слоя использовали ПТМСП [US Patent №4728431, 03.01.1988; US Patent №5702503, 12.30.1997]. Общими недостатками этих мембран является большая толщина разделительного слоя и низкая проницаемость.

Наиболее близким аналогом предлагаемой композиционной мембраны является композиционная мембрана на основе ПТМСП, предназначенная для разделения углеводородов фракций C14 [US Patent №5501722, 03.26.1996]. Мембрана включает пористую подложку из полиэфирсульфона и селективный слой из ПТМСП. Мембрана получена методом погружения, при котором подложка протягивается, касаясь поверхности раствора ПТМСП в толуоле с концентрацией полимера 5%. Таким образом получают композиционные мембраны с одним и более слоями ПТМСП.

Газопроницаемость образца мембраны с двухслойным покрытием составляла по N2 - 2,4, по CH4 - 5,5, по C3H8 - 13,0 м32·ч·атм. По оценке авторов это соответствует расчетной толщине разделительного слоя ПТМСП - 7 мкм.

Недостатком такой мембраны является низкая производительность и химическая нестойкость пористой подложки в водных растворах алифатических алканоламинов.

Задача изобретения - повышение производительности композиционной мембраны и обеспечение химической стойкости ее пористой подложки в водных растворах алифатических алканоламинов и спиртов нормального и изостроения, в том числе при температурах не менее 70°С.

Для решения поставленной задачи предложена композиционная мембрана, состоящая из пористой подложки со средним диаметром пор 0,15÷0,45 мкм, контактирующего с указанной подложкой промежуточного слоя, а также контактирующего с этим промежуточным слоем селективного слоя, причем оба указанных слоя выполнены из стеклообразных полимеров, каждый из которых имеет температуру стеклования в диапазоне 140-440°С, а селективный слой обладает коэффициентом газопроницаемости по CO2, по меньшей мере, 6000 Баррер, селективностью проницаемости CO2/N2 не менее 1,5 и нанесен из раствора в растворителе, в котором указанный промежуточный слой нерастворим.

Для нанесения слоев используют один и тот же полимер или разные полимеры.

В качестве подложки используют микрофильтрационную полимерную мембрану на основе полипропилена или предварительно обработанную методом холодного вальцевания композиционную микрофильтрационную полимерную мембрану на основе фторполимеров или их сополимеров, или микрофильтрационную металлокерамическую мембрану на основе пористых металлов - нержавеющей стали и/или титана, и/или никеля с разделительными слоями из оксидов титана или алюминия, или кремния, или циркония.

Селективный слой может дополнительно содержать наполнитель из стеклообразного полимера, имеющего температуру стеклования не выше 220°С и коэффициент проницаемости по двуокиси углерода не более 400 Баррер при содержании наполнителя не менее 0,1 масс.% и менее 4,9 масс.% от массы селективного слоя, или наполнитель из поли(диметилсилметилен)а при содержании наполнителя не менее 1,0 масс.% и менее 12,0 масс.%.

При разработке композиционных мембран необходимо учитывать два важнейших обстоятельства. Первое - выбор суппорта (слоя подложки), второе - выбор стеклообразного полимера.

Суппорт (слой подложки). Специфика композиционных мембран с разделительными слоями из высокопроницаемых стеклообразных полимеров (как, например, ПТМСП) состоит в том, что для их получения нельзя использовать подложки на основе ультрафильтрационных мембран (размер пор не более 0,1 мкм), газопроницаемость которых сопоставима с газопроницаемостью материала селективного слоя. Применение таких подложек не позволяет реализовать главное достоинство высокопроницаемых стеклообразных полимеров - рекордно высокую производительность по газам (так, например, мембрана из ПТМСП толщиной 1 мкм имеет производительность, например, по диоксиду углерода около 75 м32·ч·атм и по азоту 17,7 м32·ч·атм). Поэтому для высокопроницаемых композиционных мембран в качестве суппорта необходимо применять микрофильтрационные мембраны со средним диаметром пор около 0,15-0,45 мкм и производительностью, например, по азоту около 1000 м32·ч·атм. Такие подложки не создают сопротивление потоку газа, проходящего через композиционную мембрану из высокопроницаемых стеклообразных полимеров.

Модификация полимера. Известно, что параметры газопереноса могут существенно различаться в зависимости от микроструктуры цепи. Так, например, в литературе показана разница в газопроницаемости для ПТМСП и поли[(1-триметилгермил)-1-пропин-1)]а (ПТМГП) [J. Polym. ScL, Part A 41 (2003), 2133-2155], полученных с применением катализаторов на основе соединений ниобия или тантала. От типа катализатора полимеризации зависит структура получаемых полимеров, в частности, содержание звеньев макромолекул цис-конфигураций, а также растворимость полимера в различных растворителях. Из приведенной таблицы 1 видно, что растворимости полимеров ПТМСП и ПТМГП в алифатических углеводородах отличаются в зависимости от содержания в них цис-структур (катализатора) [J. Polym. ScL, Part A 41 (2003), 2133-2155].

Таблица 1
Влияние структуры полимера на растворимость ПТМСП и ПТМГП [J. Polym. Sci., Part А 41 (2003), 2133-2155].
Полимер Катализатор на основе Содержание цис-структур % Растворитель
ПТМСП Пентан Гексан Гептан Октан Цик-логек-сан Бензол Толуол CCl4* ТГФ**
TaCl5 20 + + + + + + + + +
TaCl5 40 + + + + + + + + +
TaCl5 50 + + + + + + + + +
NbCl5 65 - - - + + + + + +
NbCl5 70 - - - + + + + + +
NbCl5 80 - - - + + + + + +
ПТМГП TaCl5 5 - - - - - - - + +
NbCl5 65 - - - + + + + + +
*Четыреххлористый углерод,** Тетрагидрофуран.+растворим,-нерастворим.

Газоселективные свойства ПТМСП и ПТМГП, полученных с применением этих катализаторов также различаются, как это видно из таблицы 2. При этом значения газопроницаемости для ПТМГП могут отличаться в более, чем 1,8 раз в зависимости от используемого катализатора [J. Polym. Sci., Part A 41 (2003), 2133-2155].

Таблица 2
Газоселективные характеристики ПТМСП (US Patent #7591878).
Катализатор полимеризации Коэффициент газопроницаемости O2 (Баррер) Коэффициент газопроницаемости N2 (Баррер) Селективность O2/N2
ПТМСП-NbCl5 6300-6910 3800-4260 1,65-1,68
ПТМСП-TaCl5/Al(i-Bu)3 7900-8830 5200-5750 1,52-1,54
ПТМГП-TaCl5 3330 1850 1,8
ПТМГП-NbCl5 1830 780 2,3

Высокое (65-80%) содержание цис-структур в ПТМСП, полученном с применением в качестве катализатора NbCl5, и его нерастворимость в алифатических углеводородах С5-C7 открывают возможность регулировать структуру различных слоев полимера в композиционной мембране и ее газотранспортные свойства. В случае ПТМГП снижение растворимости полимера в алифатических растворителях может быть достигнуто за счет снижения содержания цис-структур, например, до 5% (таблица 1). При этом из литературы известно, что поли(4-метил-2-пентин) (ПМП), как еще один как представитель класса высокопроницаемых полимерных стекол (P(CO2)=7100 Баррер [J. Membr. Sci. 383 (2011) 241-249]), обладает еще более высокой стабильностью в среде углеводородов [Macromol. Chem. Phys. 208 (2007),2412-2418].

Для реализации такого подхода необходимо наносить на подложку, как минимум, два полимерных слоя. Первый, промежуточный, слой - выполняет функцию подслоя, устраняющего дефекты поверхности микрофильтрационной мембраны и обеспечивающего адгезию к поверхности суппорта второго слоя. Второй, селективный, слой - обеспечивает высокую проницаемость и селективность по целевым компонентам разделяемых смесей.

Нанесение второго слоя из растворителя, в котором растворяется первый нанесенный слой, как это описано в прототипе, приводит к частичному растворению первого слоя и, следовательно, к частичному разрушению и утрате функциональных качеств («залечивание» дефектов подложки и адгезионность). Это обстоятельство вызывает необходимость либо увеличивать концентрацию полимера в растворе для формования (например до 5% масс. согласно прототипу), либо увеличивать число наносимых слоев, что приводит к увеличению толщины разделительного слоя и, как следствие, к снижению производительности получаемой таким образом мембраны. Именно это и наблюдалось в способе получения мембраны, описанной в прототипе.

В предлагаемой заявке конструкции композиционной мембраны промежуточный слой формируется нанесением на подложку раствора полимера, например, в толуоле, а селективный - из раствора того же или другого высокопроницаемого полимера, например, в гексане, т.е. в растворителе, в котором уже нанесенный промежуточный слой нерастворим. Это позволяет при формовании селективного слоя ограничиться однократным нанесением раствора с низкой концентрацией (не более 1,5%) полимера, что обеспечивает заявляемую производительность мембраны.

Высокая термостабильность и химическая устойчивость ПТМСП (Тстеклования>250°С), ПТМГП (Тстеклования>250°С) И (ПМП) (Тстеклования=260°С [J. Membr. Sci. 383 (2011) 241-249] позволяют формовать на их основе высокопроницаемые композиционные мембраны, отвечающие указанным выше требованиям. Пористые подложки для таких мембран необходимо подбирать в соответствии с условиями предполагаемой эксплуатации композиционной мембраны. В определенных случаях возможно применение известных пористых материалов из класса микрофильтрационных композиционных полимерных мембран на основе полипропилена, фторсодержащих полимеров, полисульфона и др. При необходимости соответствия всей совокупности требований (процессы очистки газовых сред от кислых газов при температурах до 120°С и давлениях до 40÷100 атм)) в качестве подложки для композиционной мембраны необходимо применять термостойкие металлокерамические композиционные мембраны. Независимо от типа применяемой подложки с микропористыми покрытиями, все они требуют предварительной обработки для устранения достаточно широкого разброса размеров пор, в первую очередь наличие пор с максимальным диаметром. Размер этих пор может значительно (на 50-100%) превышать размеры пор со средним диаметром, которые и являются заявляемой характеристикой микрофильтрационных мембран. Это обстоятельство не позволяет сформировать супертонкие бездефектные селективные слои из высокопроницаемых полимерных стекол. Предлагаемый способ предварительной обработки зависит от типа применяемой подложки:

- Подложка - металлокерамическая композиционная микрофильтрационная мембрана.

В этом случае подготовку к нанесению селективного слоя осуществляют путем нанесения промежуточного слоя из стеклообразного полимера, имеющего температуру стеклования, по меньшей мере, 140°С, коэффициент проницаемости по CO2, по меньшей мере, 3000 Баррер и нерастворимого в алифатических углеводородах С5-C7 (как, например, ПТМСП, синтезированный с использованием катализатора на основе соединений ниобия - «Nb-ПТМСП») из раствора, например, в тетрагидрофуране с концентрацией 0,5% масс. Как видно из данных таблицы 3 таким способом удается более, чем в два раза уменьшить максимальный диаметр пор, и полученная подложка позволяет формовать бездефектный селективный слой. Аналогичный результат достигается и при нанесении в качестве промежуточного слоя ПТМГП, или ПМП.

- Подложка - композиционная микрофильтрационная мембрана с разделительным слоем из сополимера тетрафторэтилена с винилиденфторидом (МФФК).

В этом случае подготовку могут осуществлять способом, аналогичным вышеописанному, с применением раствора полимера в октане с концентрацией полимера 0,8% масс.

Результаты представлены в таблице 5.

Однако, для подложек на основе композиционных микрофильтрационных мембран с разделительным слоем из фторполимеров предпочтительным является предлагаемый способ холодного (при комнатной температуре) вальцевания исходной микрофильтрационной мембраны путем прокатки между стальными полированными валками подложки с регулируемым удельным усилием в интервале 12÷36 кг/см2.

Результаты представлены в таблице 7.

Как видно из данных таблиц 5 и 7, оба способа подготовки подложки обеспечивают уменьшение максимального диаметра пор, но предпочтительным является вальцевание, поскольку в этом случае снижается расход высокопроницаемого стеклообразного полимера.

- Подложка - микрофильтрационная мембрана из полипропилена. В этом случае применяют раствор полимера в толуоле с концентрацией 1,2% масс. Результаты представлены в таблице 9.

Предлагаемая в настоящей заявке высокопроизводительная композиционная мембрана состоит из следующих структурных элементов (Фиг.1):

1. Пористая подложка.

а) Микрофильтрационные металлокерамические композиционные мембраны на основе пористых металлов (нержавеющая сталь, титан, никель и др.) с разделительными слоями из оксидов Ti, Al, Si, Zr и др., средний диаметр пор 0,15÷0,45 мкм - для процессов абсорбции-десорбции кислых газов с температурой до 120°С и давлением до 40÷100 атм., концентрирования органических соединений из водных сред методом первапорации, а также при выделении целевых компонентов (например, с молекулярной массой 500-600 г/моль и выше) из органических сред.

б) Микрофильтрационные полимерные композиционные или асимметричные мембраны с разделительными слоями из полимеров и сополимеров на основе тетрафторэтилена, полипропилена, полисульфонов и др. полимеров, средний диаметр пор 0,15÷0,45 мкм для процессов с температурой разделяемых сред не выше 100°С и давлением не выше 10 атм., концентрирования органических соединений из водных сред, а также при выделении целевых компонентов (например, с молекулярной массой 500-600 г/моль и выше) из органических сред (т.н. нанофильтрация органических сред).

2. Промежуточный полимерный слой.

Для формования этого слоя используют стеклообразные полимеры, имеющие температуру стеклования, по меньшей мере, 140°С, коэффициент газопроницаемости по CO2, по меньшей мере, 3000 Баррер, нерастворимые в алифатических углеводородах С57.

3. Селективный полимерный слой.

Для формования этого слоя используют стеклообразные полимеры, имеющие температуру стеклования, по меньшей мере, 140°С, коэффициент газопроницаемости по CO2, по меньшей мере, 6000 Баррер, и растворимые в органических растворителях, включая алифатические углеводороды С5-C7, или смеси этого полимера с другим стеклообразным полимером, имеющим температуру стеклования не выше 180-220°С, коэффициент газопроницаемости по CO2 400-500 Баррер (как, например, поли(винилтриметилсилан) (ПВТМС)). Газопроницаемость ПВТМС в среднем на два порядка меньше, чем у ПТМСП, но он более устойчив к воздействию повышенных температур.

Также для формования этого слоя используют смесь стеклообразного полимера, имеющего температуру стеклования, по меньшей мере, 140°С, газопроницаемость по CO2, по меньшей мере, 6000 Баррер, и растворимые в органических растворителях, включая алифатические углеводороды C57, с поликарбосиланом с целью обеспечения высокой селективности разделения водно-органический смесей [Патент РФ №2263691, 10.11.2005].

Предлагаемая конфигурация структуры композиционных мембран, основанная на различии свойств высокопроницаемых стеклообразных полимеров, полученных с применением разных катализаторов полимеризации, позволяет создать высокопроизводительные композиционные мембраны для мембранных контакторов (в первую очередь десорберов), процесса разделения водно-органических смесей и выделения целевых компонентов из органических смесей.

Для иллюстрации изобретения ниже приведены примеры, которые не ограничивают его содержания.

Пример 1. Композиционная мембрана состоит из следующих элементов.

Подложка - микрофильтрационная металлокерамическая композиционная мембрана с подложкой из пористой нержавеющей стали (размеры пор 2 мкм) с разделительным слоем из двуокиси титана, средний размер пор 0,18 мкм. Производительность по азоту - 638 м32·ч·атм.

Промежуточный слой - ПТМСП, полученный с применением катализатора на основе NbCl5 («Nb-ПТМСП»). Содержание звеньев цис-конфигурации -68%, молекулярная масса - 320000.

Селективный слой - ПТМСП, полученный с применением катализатора на основе TaCl5/ триизобутилалюминия - ТИБА («Та-ПТМСП»). Содержание звеньев цис-конфигурации - 40%, молекулярная масса - 2200000.

Формование мембраны проводят следующим образом. Растворы ПТМСП наносят на плоские листы подложки размером 20×30 см с применением мажущей фильеры. После каждого нанесения раствора мембрану сушат при температуре 20-23°С в течение нескольких часов и затем при температуре 40-60°С. Первый (промежуточный) слой наносят из раствора «Nb-ПТМСП» в тетрагидрофуране с концентрацией полимера 0,5%масс.Характеристики полученной промежуточной композиционной мембраны представлены в табл.3.

Таблица 3
Мембрана: Композиционная металлокерамическая (КМ), исходная KM с промежуточным слоем из Nb-ПТМСП (м.м.320000)
Макс. диаметр пор, мкм 0,50 0,31
Средний диаметр пор, мкм 0,18 0,14
Мин. диаметр пор, мкм 0,10 0,09

Промежуточный слой «Nb-ПТМСП» обеспечивает уменьшение максимального диаметра пор. Затем на эту промежуточную композицию наносят второй (селективный) слой из раствора «Та-ПТМСП» в гексане с концентрацией полимера 0,5% масс. Данные по газопроницаемости полученной композиционной мембраны приведены в табл.4.

Таблица 4
Мембрана: Композиционная металлокерамическая КМ, исходная KM с промежуточным слоем Nb-ПТМСП КМ с селективным слоем Та-ПТМСП
Производительность Р, м32·ч·атм
P(N2) 638 250 13,5
P(CO2) 603 261 52,5
P(O2) 640 254 18,8
α(CO2/N2) 0,94 1,04 3,9
α(CO2/O2) 0,94 1,03 2,8

Полученная описанным способом мембрана была испытана на устойчивость к воздействию температуры (120°С), давления (40 атм) и 30-% раствора диэтаноламина в воде. Мембрана была помещена в специальную ячейку в термостате с температурой 120°С. На селективную поверхность был подан водный раствор диэтаноламина при давлении 40 атм. В процессе экспозиции композиционной мембраны в этих условиях в течение 50 часов протекание жидкой фазы (вода-70%, диэтаноламин-30% масс.) не наблюдалось. Газопроницаемость мембраны после экспозиции составила: N2 - 3,4; CO2 - 14,0 м32·ч·атм, при селективности проницаемости CO2/N2 равной 3,9.

Аналогичные результаты были получены и для композиционных мембран с металлокерамической подложкой из пористой нержавеющей стали с разделительными слоями из алюмосиликатов и двуокиси циркония.

Пример 2. Подложка и промежуточный слой как в примере 1. Селективный слой - ПТМСП, полученный с применением катализатора на основе TaCl5/ТИБА и содержащий 40% звеньев цис-конфигурации, молекулярная масса - 2200000 в смеси с ПВТМС (получен полимеризацией с применением катализатора на основе лития, молекулярная масса 120000). Состав смеси % масс:95,2 «Та-ПТМСП» и 4,8 ПВТМС. Формование мембраны проводят согласно примеру 1: промежуточный слой наносят из раствора «Nb-ПТМСП» в тетрагидрофуране с концентрацией полимера 0,5%масс., селективный слой - из раствора смеси Та-ПТМСП - 95,2% масс. и ПВТМС - 4,8% в гексане с суммарной концентрацией полимеров 0,5% масс. Данные по газопроницаемости полученной композиционной мембраны - в таблице 5.

Таблица 5
Мембрана: Композиционная металлокерамическая КМ, исходная KM с промежуточным слоем Nb-ПТМСП КМ с слоем Та-ПТМСП
Производительность Р, м32·ч·атм
P(N2) 638 250 11,0
P(CO2) 603 261 45,1
P(O2) 640 254 15,6
α(CO2/N2) 0,94 1,04 4,1
α(CO2/O2) 0,94 1,03 2,9

После экспозиции в условиях согласно примера 1 газопроницаемость мембраны составила м32·ч·атм 3: N2 - 4,2; O2 - 5,9; CO2 - 17,2.

Пример 3. Подложка - микрофильтрационная мембрана из сополимера тетрафторэтилена с винилиденфторидом на нетканом полипропилене. Средний диаметр пор мембраны составляет 0,32 мкм. Производительность по азоту 900 м32·ч·атм.

Промежуточный слой - ПТМСП, полученный с применением катализатора на основе NbCl5. Содержание звеньев цис-конфигурации - 80%, молекулярная масса - 410000. Селективный слой - ПТМСП, полученный с применением катализатора на основе TaCl5/ТИБА. Молекулярная масса - 1100000. Формование мембраны осуществляют путем погружения и протяжки подложки через формовочный раствор с последующей сушкой, согласно примеру 1. Промежуточный слой наносят из раствора «Nb-ПТМГП» в октане с концентрацией полимера 0,8% масс. Характеристики полученной промежуточной композиционной мембраны представлены в таблице 6.

Таблица 6
Мембрана: Композиционная фторполимерная МФФК, исходная МФФК с промежуточным слоем из «Nb-ПТМСП» (м.м.410000)
Макс. диаметр пор, мкм 0,38 0,23
Средний диаметр пор, мкм 0,32 0,15
Мин. диаметр пор, мкм 0,22 0.08

Промежуточный слой «Nb-ПТМГП» обеспечивает уменьшение максимального диаметра пор. Затем аналогичным образом на эту промежуточную композиционную мембрану наносят селективный слой из раствора «Та-ПТМСП» в гептане с концентрацией полимера 0,7% масс. Данные по газопроницаемости полученной композиционной мембраны приведены в таблице 7.

Таблица 7
Мембрана: МФФК, исходная МФФК с промежуточным слоем Nb-ПТМСП МФФК с селективным слоем Та-ПТМСП
Производительность Р, м32·ч·атм
P(N2) 900 368 8,4
P(CO2) 865 361 36,4
P(O2) 885 364 12,1
α(CO2/N2) 0,96 0,98 4,4
α(CO2/O2) 0,98 0,99 3,0

Полученная описанным способом мембрана была испытана на устойчивость к воздействию температуры 70°С, давления 10 атм в контакте с водным раствором моноэтанолэтилендиамина в течение 50 ч. Протекания жидкой фазы не наблюдалось, производительность по газам (N2, O2 и CO2) снизилась в среднем на 35-40%.

Пример 4. Подложка - композиционная микрофильтрационная мембрана из сополимера тетрафторэтилена с винилиденфторидом на нетканом полипропилене. Средний диаметр пор мембраны составляет 0,32 мкм. Производительность по азоту 900 м32·ч·атм. Метод предварительной обработки подложки - холодное вальцевание. Микрофильтрационную мембрану заправляют между двумя стальными полированными валками с регулируемой степенью прижима мембраны к вращающимся валкам. Удельное усилие на мембрану составляет 24 кг/см2. Из таблицы 8 видно, что максимальный диаметр пор уменьшается до размеров, приемлемых для однократного нанесения селективного слоя из «Nb-ПТМСП» из раствора в хлорбензоле с концентрацией полимера 1,2%. Характеристика мембраны представлена в таблице 9.

Таблица 8
Мембрана: Композиционная фторполимерная МФФК, исходная МФФК после вальцевания, (удельное усилие 24 кг/см2)
Макс. диаметр пор, мкм 0,37 0,24
Средний диаметр пор, мкм 0,32 0,18
Мин. диаметр пор, мкм 0,25 0,13
Таблица 9
Мембрана: Композиционная МФФК исходная МФФК после вальцевания (удельное усилие 24 кг/см2) МФФК с селективным слоем Nb-ПТМСП
Производительность, Р м32·ч·атм
П(N2) 900 384 8,6
П(CO2) 865 380 32,8
П(O2) 885 378 12,3
α(CO2/N2) 0,96 0,98 3,8
α(CO2/O2) 0,98 1,0 2,7

Пример 5. Композиционная мембрана состоит из слоев, как в Примере 1. В качестве подложки применена микрофильтрационная мембрана из полипропилена (ПМ) со средним размером пор 0,39 мкм. Производительность подложки по азоту 1100 м32·ч·атм. Промежуточный слой - Nb-ПТМСП, молекулярная масса - 410000. Селективный слой -ПТМСП, полученный с применением катализатора на основе TaCl5/ТИБА. Содержание звеньев цис-конфигурации - 20%, молекулярная масса - 1300000. Формование мембраны проводили согласно примеру 3. Промежуточный слой наносили из раствора «Nb-ПТМСП» в толуоле с концентрацией полимера 1,5% масс. Характеристики полученной промежуточной композиционной мембраны представлены в таблице 10.

Таблица 10
Мембрана: Полипропиленовая микрофильтрационная ПМ, исходная ПМ с промежуточным слоем ПТМСП (м.м. 410000), 1,2% толуол
Макс. диаметр пор, мкм 0,62 0,43
Средний диаметр пор, мкм 0,39 0,22
Мин. диаметр пор, мкм 0,16 0,11

Затем аналогичным образом на эту промежуточную композиционную мембрану двукратно наносят селективный слой из раствора «Та-ПТМСП» в гексане с концентрацией полимера 1,5% масс. Данные по газопроницаемости полученной композиционной мембраны приведены в таблице 11.

Таблица 11
Мембрана: ПМ, исходная ПМ с промежуточным слоем ПТМСП ПМ с селективным слоем ПТМСП
Производительность, Р, м32·ч·атм
P(N2) 1100 396 9,7
P(CO2) 1045 381 40,7
P(O2) 1060 384 13,9
α(CO2/N2) 0,95 0,96 4,2
α(CO2/O2) 0,99 0,99 2,9

После экспозиции мембраны под давлением 40 атм в течение 50 ч газопроницаемость мембраны не изменилась.

Пример 6. Композиционная мембрана состоит из слоев как в Примере 3 с отличием в том, что промежуточный слой наносят из раствора ПТМГП, полученного с применением катализатора на основе TaCl5, в толуоле с концентрацией полимера 1,0% масс. Характеристики полученной композиционной мембраны представлены в таблице 12.

Таблица 12
Мембрана: МФФК, исходная МФФК с промежуточным слоем Та-ПТМГП МФФК с селективным слоем Та-ПТМСП
Производительность, Р, м32·ч·атм
P(N2) 900 340 7,6
P(CO2) 865 336 31,6
P(O2) 885 339 10,6
α(CO2/N2) 0,96 0,99 4,2
α(CO2/O2) 0,98 0,99 3,0

Пример 7. Композиционная мембрана состоит из слоев как в Примере 3 с отличием в том, что промежуточный слой наносился из раствора НМЛ, полученный с применением катализатора на основе NbCl5, в толуоле с концентрацией полимера 1,0% масс. Характеристики полученной композиционной мембраны представлены в таблице 13.

Таблица 13
Мембрана: МФФК, исходная МФФК с промежуточным слоем Nb-ПМП МФФК с селективным слоем Та-ПТМСП
Производительность, Р, м32·ч·атм
P(N2) 900 326 7,2
P(CO2) 865 316 28,5
P(O2) 885 323 9,9
α(CO2/N2) 0,96 0,97 4,0
α(CO2/O2) 0,98 0,98 2,9

Пример 8. Композиционную мембрану, полученную в Примере 3, используют для концентрирования растворенного органического соединения из его водного раствора методом первапорации на примере системы бутанол-вода (весовое соотношение 1:99) по методике, описанной ранее в [Патент РФ 2408416, 11.11.2008; Серия. Крит. Технол. Мембраны. 48 (2010), 16-20], где движущая сила создается за счет разницы температуры в 40-50°С. Полученный фактор разделения бутанол/вода составил 17 при потоке через мембрану 0,43 кг/м2·ч.

Пример 9. Композиционная мембрана состоит из слоев как в Примере 3 с отличием в том, что селективный слой наносили из раствора смеси «Та-ПТМСП» - 95,5% масс. и поли(диметилсилметилен)а (молекулярная масса -360000) - 4,5% в гептане с суммарной концентрацией полимеров 0,7% масс. Полученную композиционную мембрану используют для концентрирования бутанола методом первапорации согласно Примеру 9. Полученный фактор разделения бутанол/вода составил 25 при потоке через мембрану 0,82 кг/м2·ч. Пример 10. Композиционная мембрана, полученная в Примере 3, была использована для способа разделения компонентов путем нанофильтрации на примере раствора красителя Ремазол Бриллиантовый Синий Р (626 г/моль) в этаноле (10 мг/л) по методике, описанной ранее в [J. Membr. Sci. 333 (2009) 88-93]. Характеристики полученной композиционной мембраны представлены в таблице 14, где для сравнения также представлены аналогичные показатели для композиционной мембраны ПТМСП на базе подложки в виде ультрафильтрационной мембраны из полиакрилонитрила (ПАН).

Таблица 14
Производительность, кг/м2·ч·атм Удерживание красителя, % Источник
Подложка МФФК 241 - -
КМ (МФФК+ПТМСП)
5,5 79 -
120 [Environ. Progress. 20(2001)17-22]
Подложка ПАН -
4,6 [J. Membr. Sci. 333 (2009)88-93]
КМ (ПАН+ПТМСП) 79

1. Композиционная мембрана, состоящая из пористой подложки со средним диаметром пор 0,15÷0,45 мкм, контактирующего с указанной подложкой промежуточного слоя, а также контактирующего с этим промежуточным слоем селективного слоя, причем оба указанных слоя выполнены из стеклообразных полимеров, каждый из которых имеет температуру стеклования в диапазоне 140-440°C, а селективный слой обладает коэффициентом газопроницаемости по СО2, по меньшей мере, 6000 Баррер, селективностью проницаемости CO2/N2 не менее 1,5, и нанесен из раствора в растворителе, в котором указанный промежуточный слой нерастворим.

2. Мембрана по п.1, отличающаяся тем, что для нанесения слоев используют один и тот же полимер.

3. Мембрана по п.1, отличающаяся тем, что для нанесения слоев используют разные полимеры.

4. Мембрана по одному из пп.1-3, отличающаяся тем, что в качестве подложки используют микрофильтрационную полимерную мембрану на основе полипропилена.

5. Мембрана по одному из пп.1-3, отличающаяся тем, что в качестве подложки используют предварительно обработанную методом холодного вальцевания композиционную микрофильтрационную полимерную мембрану на основе фторполимеров или их сополимеров.

6. Мембрана по одному из пп.1-3, отличающаяся тем, что в качестве подложки используют микрофильтрационную металлокерамическую мембрану на основе пористых металлов - нержавеющей стали, и/или титана, и/или никеля с разделительными слоями из оксидов титана, или алюминия, или кремния, или циркония.

7. Мембрана по одному из пп.1-3, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из стеклообразного полимера, имеющего температуру стеклования не выше 220°C и коэффициент проницаемости по двуокиси углерода не более 400 Баррер при содержании наполнителя не менее 0,1 мас.% и менее 4,9 мас.% от массы селективного слоя.

8. Мембрана по п.4, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из стеклообразного полимера, имеющего температуру стеклования не выше 220°C и коэффициент проницаемости по двуокиси углерода не более 400 Баррер при содержании наполнителя не менее 0,1 мас.% и менее 4,9 мас.% от массы селективного слоя.

9. Мембрана по п.5, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из стеклообразного полимера, имеющего температуру стеклования не выше 220°C и коэффициент проницаемости по двуокиси углерода не более 400 Баррер при содержании наполнителя не менее 0,1 мас.% и менее 4,9 мас.% от массы селективного слоя.

10. Мембрана по п.6, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из стеклообразного полимера, имеющего температуру стеклования не выше 220°C и коэффициент проницаемости по двуокиси углерода не более 400 Баррер при содержании наполнителя не менее 0,1 мас.% и менее 4,9 мас.% от массы селективного слоя.

11. Мембрана по одному из пп.1-3, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из поли(диметилсилметилен)а при содержании наполнителя не менее 1,0 мас.% и менее 12,0 мас.%.

12. Мембрана по п.4, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из поли(диметилсилметилен)а при содержании наполнителя не менее 1,0 мас.% и менее 12,0 мас.%.

13. Мембрана по п.5, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из поли(диметилсилметилен)а при содержании наполнителя не менее 1,0 мас.% и менее 12,0 мас.%.

14. Мембрана по п.6, отличающаяся тем, что селективный слой дополнительно содержит наполнитель из поли(диметилсилметилен)а при содержании наполнителя не менее 1,0 мас.% и менее 12,0 мас.%.



 

Похожие патенты:

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов Поверхность полимерных мембранных материалов после обработки газообразной смесью, содержащей фтор, обрабатывают смесью из газообразных окиси азота NO и/или NO2 и инертного разбавителя, после чего поверхность обрабатывают водным раствором аммиака и обдувают.

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов, полимерных мембран различного вида (гомогенных, композитных, половолоконных и т.д.) и изготовленных из них газоразделительных устройств с целью придания им улучшенных газоразделительных свойств.

Изобретение относится к композиционным мембранным материалам для очистки жидкости, в частности питьевой воды. .

Изобретение относится к технологии производства армированных мембран, в частности мембран для ультра- и микрофильтрации, используемых для осуществления барометрических процессов разделения растворов и суспензий.

Изобретение относится к технологии получения разделительных микропористых мембран, которые могут быть использованы для отделения таких молекул, как водород, азот, аммиак, вода, друг от друга и/или от малых органических молекул, таких как алканы, алканолы, простые эфиры и кетоны.

Изобретение относится к области синтеза палладиевых нанокристаллических катализаторов в виде мембран. .
Изобретение относится к способу получения анионообменных мембран с улучшенными массообменными характеристиками, применяемых в электродиализных аппаратах для переработки различных растворов, получения высокочистой воды и регулирования рН обрабатываемого раствора.
Изобретение относится к мембранным процессам выделения органических соединений из растворов. .

Изобретение относится к области получения фильтровальных материалов и может быть использовано в медицине, фармацевтике, биотехнологии, электронной, химической и пищевой промышленности.

Изобретение относится к области нанотехнологий и может быть использовано для проведения процессов разделения газовых смесей (в кнудсеновском потоке), в качестве основы для создания проточных мембранных катализаторов, а также для проведения процессов ультра- и микрофильтрации и может применяться в химической, электронной и пищевой промышленности, а также в медицине и биотехнологиях.

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное извлечение гелия из содержащих его газовых смесей при комнатной температуре. 2 ил., 2 табл.

Группа изобретений раскрывает микропористые UZM-5 цеолитные мембраны, способы их получения и способы разделения газов, паров и жидкостей с их использованием. Микропористые UZM-5 цеолитные мембраны с небольшими порами получают двумя способами. Один из способов включает кристаллизацию in situ одного или более слоев кристаллов UZM-5 цеолита на пористой мембранной подложке. Второй способ включает кристаллизацию с затравкой в реакционной смеси непрерывного второго слоя кристаллов UZM-5 цеолита на слое кристаллов UZM-5 цеолита, нанесенного на пористую мембранную подложку. Полученные мембраны в виде дисков, трубок или полых волокон имеют высокую термическую и химическую стабильность, стойкость к эрозии, к СО2 и повышенную селективность при разделении газов, паров и жидкостей. 4 н. и 6 з.п. ф-лы.

Изобретение относится к области нанотехнологии, а именно к способу получения гибкой нанопористой композиционной мембраны с ячеистой структурой из анодного оксида металла или сплава, и может быть использовано для формирования керамических мембран с высокой проницаемостью, устойчивых при больших перепадах давления. Осуществляют нанесение защитного слоя путем селективного анодирования поверхности фольги из металла или сплава с получением барьерного оксидного слоя, формирование на незащищенных участках ячеек из пористой оксидной пленки металла или сплава путем повторного анодирования, удаление непрореагировавшего металла или сплава с обратной стороны фольги путем анодного окисления и последующего химического растворения оксидной пленки, полученной на обратной стороне фольги. Обеспечивается получение гибких пористых мембран, устойчивых при больших перепадах давления (более 10 атм) и позволяющих существенно снизить вероятность образования трещин в оксидном слое при монтаже фильтрующих элементов и проведении баромембранных процессов обогащения/разделения. 10 з.п. ф-лы, 5 ил., 1пр.

Изобретение относится к области очистки сточных вод, содержащих трудноокисляемые органические соединения. Установка для очистки воды каталитическим окислением содержит последовательно соединенные сырьевую емкость, заполняемую очищаемой от загрязняемых примесей водой, насос, подающий воду в эжектор для смешения с озоно-кислородной смесью, сатуратор и мембранный блок с каталитически активными мембранами, один выход которого соединен с входом сатуратора для подачи концентрата, при этом в сатуратор встроены теплообменник, краны-газоотводчики, соединенные с деструктором остаточного озона, сатуратор при помощи трубопровода с насосом-дозатором напрямую соединен с сырьевой емкостью для обрабатываемой жидкости, а всасывающий трубопровод насоса, обслуживающего эжектор, соединен с сатуратором, образуя замкнутый цикл. Изобретение обеспечивает уменьшение энергозатрат, уменьшение расхода озона и более гибкое регулирование процесса водоочистки. 1 ил.

Изобретение относится к технологии получения композитной формованной мембраны на основе неорганических природных силикатов и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности, где существует необходимость в очистке растворов, требующих обеззараживания. Способ включает измельчение смеси исходных компонентов, приготовление суспензии, ее высушивание и последующий обжиг. Высушенную суспензию размалывают, затем просеивают и отбирают фракцию с размером частиц не более 0.1 мм, которую подвергают формованию прессованием при давлении 1.0-3.0 т/см2, обжиг осуществляют при температуре 500-600°C, а в качестве исходных используют компоненты, мас. %: цеолит 20-25, 1,5%-ный раствор хитозана в 2%-ной уксусной кислоте 1-3, SiO2 20-25, 64%-ный водный раствор Na2SiO3 40-50, концентрированный водный раствор ZrOCl2·12Н2О 3-9, 1%-ный раствор AgNO3 0,5-1. Технический результат: создание энергосберегающего способа изготовления формованных керамических мембран с повышенной механической прочностью, обладающих обеззараживающим действием при очистке зараженных стоков. 1 ил., 4 табл., 4 пр.
Изобретение относится к области мембранных технологий. Способ прогнозирования основан на корреляции газохроматографических характеристик веществ, полученных на колонке с неподвижной жидкой фазой, с транспортными свойствами исследуемой мембраны. Сущность прогнозирования основана на следующем. Процессы разделение жидкостей первапорацией и газохроматографически описываются взаимосвязанными характеристиками в случае физико-химической идентичности полимеров разделительных диффузионных слоев. Для прогнозирования разделительных свойств первапорационной мембраны измеряют времена удерживания исследуемых компонентов на хроматографической колонке, которая имеет неподвижную жидкую фазу, идентичную мембранообразующему полимеру. Рассчитывают значения параметров ε, при этом ε рассчитывают как отношение логарифма времени удерживания к логарифму температуры кипения. По величине полученного параметра судят об возможной эффективности разделения потенциальных смесей органических жидкостей на данном полимерном материале. После приготовления из мембранообразующего полимера неподвижной жидкой фазы газохроматографической колонки проводят изучение соответствующих характеристик заданных пар органических жидкостей. По результатам проведенного эксперимента оценивают целесообразность использования данного полимерного материала для разделении заданных пар жидкостей. Изобретение позволяет прогнозировать селективность растворимых полимеров и их композиций, оптимизировать состав полимерной смеси композиционной мембраны, оценить перспективность использования конкретного мембранообразующего полимерного материала для разделения определенной смеси органических жидкостей. 2 з.п. ф-лы, 2 табл.
Изобретение относится к области мембранной техники. На поверхность гетерогенных ионообменных мембран, выполненных из полиэтилена и диспергированного в нем ионполимера, наносят раствор сульфированного политетрафторэтилена в органическом растворителе. Мембрану предварительно высушивают и обрабатывают «ледяной» уксусной кислотой и в раствор сульфированного политетрафторэтилена вносят «ледяную» кислоту, после чего мембрану подвергают термообработке. Способ позволяет получить механически прочные мембраны, способные устойчиво функционировать в электродиализных аппаратах. 5 табл.
Наверх