Патенты автора Симонов Андрей Владимирович (RU)

Изобретение относится к методам и средствам ближней радиолокации нелинейно-рассеивающих радиоэлектронных объектов, а именно, к методам обнаружения объектов беспроводных сетей передачи информации (БСПИ), скрытых в приповерхностных слоях естественных и искусственных сред и находящихся в пассивном режиме. Достигаемый технический результат – повышение эффективности обнаружения объектов БСПИ. Для улучшения характеристик обнаружения объектов БСПИ на фоне помеховых сигналов от безынерционных нелинейно-рассеивающих объектов в нелинейном радиолокаторе используется два режима излучения: в первом -одновременное излучение пары гармонических сигналов с частотами f1 и f2 (fi<f2) на интервале времени [0; Т], а во втором - одновременное излучение второй пары гармонических сигналов с частотами f1* и f2* на интервале времени [Т; 2Т], причем в обоих режимах излучаемые частоты располагаются симметрично относительно центральной частоты f0 входного контура объекта БСПИ, а их средние значения (f1+f2)/2 и (f1*+f2*)/2 выбираются совпадающими с f0: (f1+f2)/2=(f1*+f2*)/2=f0. Обработка отраженного сигнала в нелинейном радиолокаторе заключается в выделении парциальной гармонической составляющей на частоте 2f0, определение амплитуд А и А* этой составляющей при двух режимах излучения соответственно и принятие решения об обнаружении объекта БСПИ путем сравнения разности амплитуд А-А* с порогом. 3 ил.

Изобретение относится к методам и средствам радио- и радиотехнической разведки, базирующимся на использовании разнесенных в пространстве N датчиков поля. Достигаемый технический результат - повышение достоверности принимаемых решений об обнаружении источника полезных радиоимпульсов. Указанный результат достигается за счет того, что каждая пара сигналов Sn(t) и Sm(t) с выходов n-го и m-го датчиков поля (n, m=1,2,…,N) преобразуется в пару сигналов Xnm(t) и Ynm(t) на выходах соответствующих угловых дискриминаторов, сигналы Xnm(t) и Ynm(t) задерживаются на время длительности τ полезных радиоимпульсов, а выходной сигнал U(t) обнаружителя формируется путем суммирования амплитуд Anm(t) и Bnm(t) разностных сигналов соответственно ΔXnm(t)=Xnm(t)-Xnm(t-τ) и ΔYnm(t)=Ynm(t)-Ynm(t-τ): U(t)=ΣnΣm[Anm(t)+Bnm(t)]; n, m=1,2,…,N, m < n. 3 ил.

Изобретение относится к обнаружению запрещенных предметов и идентификации их носителей в потоке людей, поочередно пересекающих проем арочного металлодетектора. Сущность: осуществляют излучение зондирующего сигнала в виде последовательности коротких импульсов с высокой скважностью. Принимают отражённый сигнал двумя парами приёмных катушек, установленных на высоте h12 и h34 в левой и правой арочных стойках соответственно. Формируют из выходных сигналов S1(t) и S2(t) первой и второй S2(t) приёмных катушек и выходных сигналов S3(t) и S4(t) третьей и четвертой приемных катушек градиентометрический сигнал S34(t)=S3(t)-S4(t). Формируют арочный сигнал S∑(t)=S12(t)-S34(t). Осуществляют частотную фильтрацию и временную селекцию арочного сигнала S∑(t) с последующим выделением мгновенных значений его амплитуды A(t). Формируют плавающий порог P(t) путём усреднения A(t) на интервале (t-T;t), где Т - время, отводимое для мониторинга одного лица в потоке. Носителем запрещённого предмета определяется лицо, пересекающее арочный проём в момент превышения A(t) порога P(t). Технический результат: повышение помехозащищенности арочно-импульсных металлодетекторов по отношению к внешней помехе, создаваемой удаленными источниками радиоизлучения. 3 ил.

Изобретение относится к методам и средствам обнаружения малоразмерных электронных устройств (ЭУ) на базе импульсных металлодетекторов. Поставленная цель - повышение эффективности обнаружения ЭУ - достигается за счет более рационального использования временного ресурса, отводимого на поиск ЭУ, и расширения функциональных возможностей импульсного металлодетектора путем его комплексирования с пассивным обнаружителем излучаемого ЭУ потока магнитных импульсов. Отличительной особенностью предложенного активно-пассивного импульсного металлодетектора является вобуляция периода повторения его зондирующих импульсов, причем управление процессом вобуляции осуществляется бинарно-квантованными сигналами, принятыми в пассивном режиме работы импульсного металлодетектора. В способе обнаружения электронных устройств импульсным металлодетектором осуществляется генерирование тактовых импульсов, формирование с помощью счетчика тактовых импульсов последовательности цикловых импульсов Cn(n=1,2,…,N), передним фронтом которых завершается (n-1)-й цикл обнаружения, а задним фронтом - начинается n-й цикл обнаружения, организация в пределах каждого n-го цикла последовательно активного и пассивного режимов работы импульсного металлодетектора, бинарное квантование результатов обработки принимаемых сигналов в активном и пассивном режимах, подсчет числа бинарных единиц квантования для каждого из режимов в течении N циклов и сравнение результатов этих подсчетов с пороговыми числами, дополнительно осуществляется обнуление счетчика тактовых импульсов единицами бинарного квантования, полученными в пассивном режиме, причем активный режим каждого цикла начинается с излучения зондирующего импульса. 2 ил.

Изобретение относится к методам и средствам обработки сигналов в радиотехнических системах и может быть использовано при решении задач обнаружения радиоимпульсов в условиях воздействия непрерывной узкополосной помехи с неизвестной несущей частотой. Достигаемый технический результат - повышение эффективности обнаружения. Указанный результат достигается за счет того, что признаками присутствия радиоимпульса на входе обнаружителя принимаются не только положительные, но и отрицательные выбросы в выходном сигнале обнаружителя, при этом для регистрации отрицательных выбросов используется дополнительная пороговая схема. обеспечивающая улучшение характеристик обнаружения. 3 ил.

Изобретение относится к области радиотехники и может быть использовано при решении задач пассивной радиолокации. Техническим результатом является улучшение обнаружения хаотической последовательности импульсов. Способ предполагает разбиение всего интервала наблюдения входного сигнала на ряд тактов, период которых приблизительно совпадает со средним значением интервалов между соседними импульсами обнаруживаемой последовательности, внутрипериодную обработку входного сигнала, заключающуюся в выборе его максимальных значений в пределах каждого тактового периода, и последующее межпериодное накопление результатов внутрипериодной обработки. 1 ил.

Способ обнаружения радиоизлучения в ближней зоне источника предназначен для выявления факта скрытой установки источников радиоизлучения в пределах охраняемой территории с помощью обнаружителя, работающего в статическом режиме. Антенная система обнаружителя состоит из трех взаимно ортогональных датчиков электрической компоненты поля и трех взаимно ортогональных датчиков магнитной компоненты поля. По данным с выходов датчиков формируется набор из девяти сигналов межкомпонентной корреляции, из которого с помощью двух различных преобразований получают выходной и пороговый сигналы обнаружителя. Технический результат - улучшение характеристик обнаружения скрытых источников радиоизлучения в условиях воздействия помех в виде сигналов удаленных источников радиоизлучения и априорной неопределенности относительно несущей частоты искомого источника.

Изобретение относится к методам и средствам ближней радиолокации нелинейно-рассеивающих объектов

Изобретение относится к радиотехнике, а именно к методам и средствам сверхближней радиоразведки источников радиоизлучения (ИРИ), и предназначено, в частности, для выявления факта скрытой установки и определения местоположения на охраняемой территории подслушивающих устройств (т.н

Изобретение относится к радиолокационным устройствам селекции движущихся целей (СДЦ), использующим импульсный зондирующий сигнал с низкой частотой повторения импульсов и высокой скважностью

Изобретение относится к устанавливаемым на ракетах головкам самонаведения с моноимпульсными пеленгаторами

Изобретение относится к радиолокации, а именно к методам определения местоположения неоднородностей в различных средах при облучении их высокочастотным электромагнитным полем, и может быть использовано в радиоволновой технике измерения диэлектрических параметров материалов и в подземной геофизике

 


Наверх