Патенты автора Боев Сергей Федотович (RU)

Станция содержит цифровой блок 36 управления, а также связанные с ним по сигналам управления и последовательно установленные генератор 9 водорода, парогенератор 10, паровую турбину 11 и электромеханический генератор 13 тока. Электрический выход генератора 13 тока соединен с шиной 8 подключения внешнего потребителя электричества и шиной 7 подключения внешнего емкостного накопителя электричества. Парогенератор 10 выполнен в виде испарительной камеры с возможностью дозированной подачи воды в полость камеры и вывода пара. Для этого с одной из боковых сторон камеры парогенератора 10 установлена водородная горелка 14, а на противоположной стороне - ускорительное сопло 15 с муфтой 6 вывода горячего пара. Парогенератор 10 с горелкой 14 установлены в охладителе 18. Охладитель выполнен в виде герметичного корпуса, соединенного по металложидкостному теплоносителю литию с теплообменником 20. Теплообменник 20 снабжен муфтами для подключения внешней системы отопления и горячего водоснабжения. Станция обладает повышенным коэффициентом полезного действия (КПД) и увеличенным временем непрерывной работы для производства из воды электричества, пара и горячей воды для полевых госпиталей, бань и пунктов санитарной обработки личного состава мобильных подразделений войсковых частей в условиях дефицита углеводородного топлива. 1 з.п. ф-лы, 2 ил.

Изобретение относится к утилизаторам бытовых отходов на основе высокотемпературного пиролиза сырья из неизмельченных твердых отходов с получением горючих газов и может быть использовано для утилизации твердых и жидких бытовых отходов. Изобретение позволяет сократить время утилизации БО с одновременным повышением качества переработки БО в полезные продукты, тепловую и электрическую энергию. Одновременно повышается экологичность процесса утилизации бытовых отходов за счет высокотемпературного сжигания и глубокой их переработки. Предлагается утилизатор бытовых отходов, содержащий загрузочную емкость и пиролизную камеру (ПК), соединенную по выходу с системой переработки продуктов пиролиза, причем корпус пиролизной камеры выполнен из термостойкого материала, а внутри корпуса установлен плазменный сжигатель бытовых отходов (БО), отличающийся тем, что загрузочная емкость выполнена в виде бункера для БО, соединенного через шнековый механизм подачи и мельчения БО с входом пиролизной камеры, плазменный сжигатель БО содержит не менее четырех водородных горелок, установленных в боковых стенках корпуса камеры, сфокусированных факелами в центр её внутренней полости и соединенных по входу через дозатор водорода с выходом генератора водорода, система переработки продуктов пиролиза содержит последовательно соединенные преобразователь кинетической энергии (ПКЭ) пиролизной плазмы в электрическую энергию, разделитель продуктов пиролиза (РПП) на составляющие газы и преобразователь разделенных газов (ПРГ) в полезные продукты, причем ПК и ПКЭ установлены в герметичном кожухе, заполненном высокотемпературной охлаждающей жидкостью и снабженном патрубками для соединения с внешним теплообменником. 8 з.п. ф-лы, 11 ил.

Изобретение относится к теплоэнергетике, конкретно к водогрейным котлам для отопления помещений и горячего водоснабжения в условиях дефицита углеводородного топлива. Изобретение позволяет снизить потребности водогрейного котла в углеводородном топливе и снизить его стоимость путем замещения части углеродного топлива водородом, синтезированным из воды и применением катализаторов из доступных по цене природных материалов. Водогрейный котел 1 содержит блок 6 управления нагревом воды, воздушный насос 7, газовую камеру 8 сжигания топлива и управляемую запорную арматуру. В камере 8 установлены низкотемпературный преобразователь 11 нагретой воды в водород, газовая горелка 9, теплообменник 10, свеча 11 зажигания, воздухозаборник 12 и датчик 13 пламени горелки 9. Низкотемпературный преобразователь 11 соединен по питающей воде с полостью теплообменника 10, а по водородному выходу – с газовой горелкой 9 через соответствующую запорную арматуру. Преобразователь 11 выполнен в виде блока последовательно соединенных кольцевых или спиральных труб из тугоплавкого материала заполненных гранулами низкотемпературного катализатора воды. В качестве низкотемпературного металлического катализатора воды использован сплав алюминия и обезвоженного гидроксида щелочного металла, разрушающего окисную пленку алюминия при взаимодействии с водой. Запорная арматура содержит блок управляемых вентилей для растопки топки ВК метаном и последующего перехода на топку синтезированным водородом, управления процессом синтеза водорода, управления качеством топливной смеси, глушения пламени водорода и обратной продувки труб преобразователя для восстановления в них катализатора в исходное осушенное состояние. 3 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике и экологии, где используют воду в качестве экологически безвредного топлива для производства тепла и электричества. Генератор водорода (1) содержит блок управления (20) с запорной арматурой управления производством водорода, а также последовательно соединенные трубопроводами водяной насос (2), реактор (3) и ресивер (4) воды и водорода. Водородный выход ресивера (4) через клапан (15) вывода водорода соединен с муфтой (19) подключения потребителя водорода и через дозатор (8) с питающим входом газовой горелки (7) устройства подогрева пластинчатого теплообменника. Реактор (3) выполнен в виде пластинчатого теплообменника, установленного в газовой камере (6) сжигания водорода. Пластины (5) теплообменника выполнены из сплава алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой. Реактор (3) установлен в полости камеры сжигания над газовой горелкой (7), а дозатор водорода выполнен в виде электромагнитного клапана, управляющий вход которого соединен с соответствующим выходом блока 20 управления. Технический результат состоит в увеличении времени работы генератора, а также в увеличении объема производства синтезированного из воды водородного топлива. 2 з.п. ф-лы, 1 ил.

Способ обнаружения слабоконтрастных динамических объектов (СДО) на сложном стационарном и нестационарном атмосферном фоне в дневных и ночных условиях с использованием оптико-электронной системы (ОЭС) обнаружения воздушных объектов основан на вейвлет-фрактально-корреляционной обработке прямоугольно-оконной сегментации изображения каждого текущего двумерного кадра, формируемого ОЭС, посредством реализации критерия достоверного обнаружения СДО бинарным пороговым обнаружителем с последующим формированием координатной информации по обнаруженному динамическому объекту для исполнительных устройств. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в разностно-дальномерных системах измерения пространственных координат летательных аппаратов. Достигаемый технический результат - повышение точности измерения координат летательного аппарата (ЛА) с одновременным расширением класса обслуживаемого бортового радиоэлектронного оборудования (БРО) ЛА как с импульсным, так и с непрерывным радиоизлучением. Указанный результат достигается тем, что частотную разведку и прием радиоизлучения БРО ЛА ведут радиоприемниками с низкоорбитальных космических аппаратов (КА). Принятые излучения преобразуют в цифровую форму и ретранслируют их совместно с текущими значениями пространственных координат КА с их борта по цифровой линии радиосвязи на наземную станцию обработки сигналов БРО ЛА. На наземной станции измеряют центральную частоту спектра сканирования радиосигналов ЛА, рассчитывают максимально возможное значение полосы доплеровского сдвига ее при встречном движении ЛА и КА. В найденной полосе частот с шагом единицы килогерц производят взаимную корреляционную обработку принятых радиосигналов ЛА одновременно двумя квадратурными каналами по каждой паре сигналов из группы радиосигналов ЛА. Сравнивают на каждом шаге численное значение взаимной корреляционной функции сигналов с пороговым значением и моменты превышения ее порогового значения принимают за истинное значение временного сдвига радиосигналов ЛА относительно текущих местоположений каждого КА. Далее измеренные корреляционным методом относительные задержки излучений БРО ЛА используют для высокоточного расчета пространственных координат ЛА разностно-дальномерным методом. 2 н.п. ф-лы, 4 ил.

Использование: для обеспечения электромагнитной совместимости радиоэлектронных средств, защиты от радиоизлучения и снижения радиолокационной заметности различных объектов. Сущность изобретения заключается в том, что поглотитель электромагнитных волн на основе гибридных нанокомпозитных структур состоит из слоев нетканого углеродосодержащего полимерного материала с малой плотностью, в которых концентрация углерода монотонно изменяется от слоя к слою, в качестве нетканого углеродосодержащего полимерного материала используют карбонизированный полиакрилонитрил, слои которого пропитаны суспензией, содержащей углеродные нанопористые микроволокна и многослойные углеродные наночастицы фуллероидного типа тороподобной формы, причем слои полиакрилонитрила карбонизированы до концентрации углерода от 1 мас.% до 99,999 мас.% с возрастанием от поверхностных к центральному слою. Технический результат: обеспечение возможности улучшения поглощающих свойств. 6 з.п. ф-лы, 1 табл.

Изобретение относится к авиационной технике, в частности к конструкциям роботизированных беспилотных летательных аппаратов (РБЛА) для мониторинга чрезвычайных ситуаций. РБЛА содержит фюзеляж, движитель, бортовую аппаратуру и молекулярный источник энергии, использующий воду в качестве расходного рабочего вещества. Бортовая аппаратура включает средства мониторинга, связи и управления. Фюзеляж выполнен в виде несущей рамы, на которой установлен движитель, содержащий не менее трех несущих винтов. Молекулярный источник энергии выполнен в виде генератора шаровой молнии или в виде электролитического мотора с генератором электрического тока для электропитания бортовой аппаратуры и вращения несущих винтов. Молекулярный источник энергии установлен в центре рамы, а несущие винты - по ее периферии. Генератор шаровой молнии может быть выполнен с возможностью электрического соединения с электроприводом несущих винтов РБЛА, а электролитический мотор - с возможностью механического соединения его вала с пропеллером РБЛА через кинематическое звено. Генератор шаровой молнии и электролитический мотор снабжены емкостями для воды и химического катализатора. Повышается надежность и независимость работы РБЛА от высоты полета и погодных условий в плотных слоях атмосферы. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам и системам дистанционного обнаружения в контролируемом пространстве объектов и предметов (оружия, взрывчатки и наркотиков), спрятанных в теле человека, под его одеждой либо в его багаже, при массовом скоплении людей или их потоке. Устройство для дистанционного обнаружения в контролируемом пространстве предметов в теле человека, под его одеждой и/или в его багаже содержит приемопередающую антенную решетку, приемник, аналого-цифровой преобразователь, вычислительный блок, при этом многоканальный выход приемопередающей антенной решетки соединен с многоканальным входом приемника, состоящего из последовательно соединенных усилителя и аналого-цифрового преобразователя, многоканальный выход которого соединен с многоканальным входом блока обработки сигналов, состоящего из спецпроцессора локально-пачечной обработки сигналов и вычислительного блока, соединенных между собой командно-цифровой шиной, а вторая командно-цифровая шина включена между пунктом принятия решения, вычислительным блоком и цифровым формирователем зондирующих сигналов, многоканальный выход которого соединен с последовательно включенными цифроаналоговым преобразователем, усилителем передатчика и многоканальным выходом передающей антенной решетки. Технический результат - дистанционный анализ состояния контролируемого пространства. 1 ил.
Изобретение относится к способам и системам дистанционного обнаружения опасных предметов в теле человека, под его одеждой и/или в багаже. Достигаемый технический результат - дистанционный контроль контролируемого пространства на обнаружение контролируемых предметов. Указанный результат достигается за счет того, что осуществляют импульсное зондирование контролируемого пространства в менее чем сантиметровом диапазоне длин радиоволн с предельно высокой крутизной фронтов, при наличии контролируемых объектов, в которых происходят резонансные явления на определенных частотах в спектре отраженных сигналов, их принимают адаптивной антенной решеткой, усиливают, проводят аналого-цифровые преобразования и осуществляют локально-пачечную обработку спектральных составляющих принятых сигналов, затем осуществляют выявление резонансных конфигураций спектров, принадлежащих конкретным контролируемым объектам с последующим построением радиопортретов и передачей их на пункт принятия решений.

Изобретение относится к цифровым информационным системам, к способам и системам защиты цифровых информационных систем от несанкционированного вмешательства

Изобретение относится к области твердотопливных брикетов, состоящих, в основном, из углеродсодержащих материалов и получаемых с помощью органического или неорганического связующего

 


Наверх