Патенты автора Макарова Луиза Евгеньевна (RU)

Изобретение относится к способу графитизации из жидкого углеводорода. Способ заключается в размещении в жидком углеводороде деталей из графита, в подключении к плюсу токопровода сварочного приспособления одной из деталей в форме стержня, подключение к минусу сварочного приспособления другой детали, в нагревании при атмосферном давлении деталей при высокой температуре, в образовании электрической дуги между деталями, в испарении жидкого углеводорода с образованием углерода на поверхности деталей. При этом способ характеризуется тем, что деталь, подключённую к минусу, выполняют в виде пластины, функционирующей в качестве подложки, обе детали размещают в жидком углеводороде с зазором друг под другом, деталь-стержень устанавливают с возможностью возвратно-поступательного перемещения при нагреве как в горизонтальной, так и в вертикальной плоскостях относительно детали-пластины, проводят нагрев током 30–60 А, образуют слои графита из жидкого углеводорода – масла на поверхности детали–подложки, наращивают слои в зазоре между деталями с образованием графита со структурой типа графен, при этом используют обе детали с одним и тем же электрохимическим потенциалом, деталь в форме стержня используют в качестве катализатора процесса, в качестве основного сырьевого материала для получаемых заготовки или изделия используют жидкий углеводород. Использование предлагаемого способа позволяет получать монолитное изделие или заготовки из графита. 9 ил.

Установка очистки воздуха относится к устройствам мокрой очистки загрязненного воздуха от пыли и токсичных газов. Установка может быть использована во всех отраслях промышленности для высокоэффективной очистки вентиляционных выбросов технологических участков воздуха производственных помещений от пыли любого типа (полимеров, металла, композиционных материалов и т.д.) и от газовых вредных выбросов при производстве, изготовлении и переработке различных материалов. Изобретение позволяет упростить устройство с одновременным получением эффекта - 100% очистки от загрязняющих воздух пылевидных и газообразных выбросов в более широком диапазоне охвата загрязняющих воздух токсичных компонентов и их размерности и соответственно в более широком охвате областей применения. Устройство для очистки воздуха, содержащее контактную емкость, частично заполненную жидкостью с образованием зазора между потолком этой емкости и уровнем жидкости в ней, воздуховод для попадания загрязненного воздуха в устройство, над контактной емкостью размещена оросительная камера с форсунками на коллекторах, установленных по центру в вертикальной плоскости относительно друг друга, отражатели ударов распыляемой жидкости из форсунок, установленных с возможностью подачи жидкости в корпус сверху вниз, противотоком поступающей в устройство пылегазовоздушной среды из зазора в контактной емкости, сепаратор-брызгоулавливатель и отводной вентиляционный канал над сепаратором, согласно изобретению подающий воздуховод выполнен с зауженным входом и введен непосредственно в контактную емкость вертикально, оросительная камера выполнена одна, трехуровневая: над контактной емкостью размещен нижний уровень, в котором размещены форсунки, установленные по центру на коллекторе в вертикальной плоскости относительно друг друга, и отражатели ударов распыляемой жидкости из этих форсунок, над нижним размещен средний уровень оросительной камеры, в котором размещены опорная и ограничительная решетки, а между ними плотно уложены шарообразные элементы, выполненные из набора параллельно закрепленных на перемычке пластин зигзагообразной формы с зазором между ними, при этом шарообразные элементы выполнены из ударопрочного, антифрикционного материала, а над ограничительной решеткой размещены форсунки горизонтальной плоскости на расстоянии друг от друга на том же коллекторе, что и форсунки первого нижнего уровня в оросительной камере, над вторым средним уровнем размещен третий верхний уровень оросительной камеры, в котором размещены брызгоулавливатель-сепаратор и отводной вентиляционный канал, над средним уровнем оросительной камеры размещен третий уровень, в котором размещены брызгоулавливатель-сепаратор и отводной вентиляционный канал, на корпусе оросительной камеры в средней ее части выполнена откидная створка. 4 ил., 1 табл.

Изобретение относится к электроэрозионной обработке, в частности к электроэрозионной прошивке отверстий в труднообрабатываемых композиционных слоисто-волокнистых материалах, содержащий углеволокно. Способ включает обработку листового композиционного слоисто-волокнистого материала, содержащего углеволокно, электродом-инструментом, подключаемым к минусу источника тока. Охлаждающую рабочую среду в виде трансформаторного масла непрерывно подают в зону обработки с обеспечением его турбулентного перемещения по поверхности обрабатываемого листа, интенсивного проникновения в межэлектродный зазор и вывода из него продуктов обработки. Обеспечивают строго вертикальное возвратно-поступательное перемещение электрода-инструмента, перпендикулярное поверхности листового материала, который обрабатывают при следующем режиме: сила тока 0,5-2 А, напряжение 100-120 В, время действия импульса 150-200 мкс. Поверхность листового материала сохраняют открытой или закрывают путем плотного закрепления на нем тонкого листа из токопроводящего, теплопроводного металла толщиной 1-1,5 мм в виде сплошного листа - накладки или листа-шаблона, имеющего сквозные отверстия заданного профиля, аналогичные прошиваемым. Техническим результатом является оптимизация режима электроэрозионной прошивки отверстий, обеспечивающего улучшение качества обработанной поверхности композиционного слоисто-волокнистого материала по всей глубине отверстия и сохранение исходного состояния поверхностных слоев связующего. 3 пр., 14 ил.

Изобретение может быть использовано для текстурирования электроэрозионной прошивкой поверхностей, преимущественно изделий, имеющих сложный профиль. Формируют систему многомодальной шероховатости с характерными размерами одновременно в нескольких диапазонах путем согласованно управляемого с помощью компьютерной системы режима воздействия для создания заданного рисунка в виде системы отстоящих друг от друга впадин. Используют электроэрозионную установку, в которой закрепляют сменный электрод-инструмент, который выполняют с двумя рабочими поверхностями из зерен порошкового металла. Рабочую поверхность обоих торцов инструмента выполняют в виде сформированных прототипированием выпуклых элементов, форма которых зависит от сложности профиля поверхности обрабатываемого материала и заданного эффекта маслоемкости. Шероховатость на поверхности электрода-инструмента находится в микрометровом диапазоне, а на элементах выпуклой формы на рабочей торцевой поверхности электрода-инструмента – в миллиметровом диапазоне. Изобретение обеспечивает получение на поверхности изделий сложной конфигурации развитой шероховатости, обеспечивающей высокую маслоемкость. 5 ил., 1 пр., 1 табл.

Изобретение может быть использовано для прогнозирования качества изделий из терморасширенного графита. Измельчают натуральный чешуйчатый графит с получением пачек параллельно уложенных пластин графита. Затем проводят интеркалирование и окисление, после чего пачки графита равномерно смачивают спиртовым раствором йода, выдерживают в закрытой емкости и нагревают до 200-250°С. После нагрева отбирают часть массы для исследования формоизменения пачек с помощью оптического микроскопа. Подсчитывают количество нетерморасширенных окисленных пачек, частично терморасширенных пачек до появления в центральной части элемента в виде червяка, частично терморасширенных пачек с почерневшими пластинками без взаимосвязи между ними и полностью терморасширенных пачек в виде элементов червеобразной формы. Затем остальную часть смеси графита со спиртовым раствором йода помещают в нагретую до 300-350°С печь и выдерживают при этой температуре до испарения газообразной составляющей продукта реакции и окончания изменения объема терморасширяющейся части графита. С помощью оптического микроскопа фиксируют последующие формоизменения графита. Определяют степень качества терморасширения исследуемых элементов графита по формуле: , где КТ - качество терморасширения исследуемого натурального чешуйчатого графита, %; Б - количество червеобразных элементов, не имеющих дефектных участков, шт.; Д - количество червеобразных элементов, имеющих дефектные участки, шт.; П - количество нетерморасширенных пачек, шт. Результаты этого расчёта учитывают при определении возможности использования терморасширенного графита. Отличная степень качества соответствует 90-100 %; хорошая - 80-90 %, удовлетворительная - 60-80 %, плохая - ниже 60 %. Изобретение позволяет повысить качество контроля терморасширенного графита и информируемость обо всех его видоизменениях. 8 ил., 1 табл.

Изобретение относится к области переработки полимерных материалов методом объемно деформационного разрушения и может быть использовано при получении дисперсного порошка из крупных гранул термопластичного полимера в виде хлопьев или пористых рыхлых червеобразной формы элементов. Измельчитель полимерных материалов содержит горизонтально установленный полый корпус цилиндрической формы, разделенный на зону подачи материала и зону разрушения материала, имеющий сквозное отверстие для загрузки материала и сквозное отверстие для выгрузки материала, вал, расположенный в корпусе по его оси и соединенный с приводом, шнек, соосно установленный на валу, и ротор, установленный на валу, обеспечивающий ступенчатую систему разрушения, регулируемую зазорами между сопрягаемыми поверхностями разрушения. Ротор установлен на валу соосно оси вала вдоль зон подачи и разрушения материала с возможностью возвратно-поступательного и вертикального перемещения в процессе измельчения относительно корпуса и выполнен из непрерывно переходящих относительно друг друга двух частей. При этом первая часть выполнена в виде многозаходного шнека с заостренными кромками элементов, которые выполнены в заходной части под углом и в направлении по часовой стрелке, с плавным переходом ко второй - выходной части под углом и в направлении против часовой стрелки. Вторая часть выполнена в виде усеченного конуса, обращенного меньшим основанием к первой части ротора. На поверхности второй части выполнены насечки под тем же углом и в том же направлении к оси вала, что и угол выходной части многозаходного шнека. Причем насечки имеют в сечении треугольную форму. В корпусе жестко закреплен статор, выполненный в виде втулки цилиндрической формы, внутренняя поверхность которой в сечении выполнена в виде двух сопряженных между собой меньшими основаниями усеченных конусов, образуя в процессе измельчения совместно с первой и второй частями ротора две зоны разрушения. При этом первый усеченный конус выполнен с зубчатой поверхностью и с протяженностью, равной протяженности первой части ротора, вершины зубьев направлены против часовой стрелки. Второй усеченный конус выполнен с насечками треугольной формы в направлении, совпадающем с направлением насечек в роторе, и протяженностью, равной протяженности второй части ротора. Ротор к сопряженной с ним поверхности статора установлен с зазорами, расширяющимися к торцам ротора и статора. Торец корпуса закрыт сменной съемной заглушкой с возможностью образования камеры и регулирования ее объема, обеспечивающей бесперебойную выгрузку пористого, имеющего развитую поверхность материала и форму в виде хлопьев или червеобразной формы. Техническим результатом является получение рыхлых пористых элементов, обладающих высокой степенью адгезии к пористому наполнителю типа терморасширенного графита, для получения электропроводящего композита и упрощение конструкции.11 ил.

Изобретение относится к технологии углеграфитовых материалов и может быть использовано при получении уплотнений, прокладок, композиционных материалов, катализаторов, сорбентов. Измельченный натуральный чешуйчатый графит интеркалируют серной кислотой в присутствии окислителя - перекиси водорода. Полученный порошок отмывают от излишков серной кислоты, высушивают и термообрабатывают с использованием оптоволоконного лазера постоянного действия с плотностью мощности 2⋅103-4⋅103 Вт/см2 при давлении 1-1,001 атмосферы, длиной волны 1-1,064 мкм в защитной среде газообразного аргона. Техническим результатом является повышение качества терморасширения и чистоты терморасширенного графита (ТРГ-пуха), упрощение способа, повышение его экологичности и энергоэффективности. Обеспечивается возможность регулирования величины насыпной плотности, степени терморасширения и, соответственно, эксплуатационных свойств полученного материала за счет подбора времени обработки и плотности мощности излучения лазера. 6 ил., 2 пр.

Изобретение относится к устройствам мокрой очистки загрязненного воздуха от токсичных газов. Оно может быть использовано для очистки воздуха от вредных выбросов при производстве, изготовлении и переработке сыпучих материалов, в частности для очистки от фенола воздуха при производстве, упаковке и переработке фенолсодержащих полимеров. Улавливатель содержит корпус контактной емкости цилиндрической формы с нижней частью конусообразной формы, частично заполненный жидкостью с образованием воздушного зазора между потолком емкости и зеркалом жидкости, патрубок ввода загрязненного воздуха, сепаратор с патрубком вывода чистого воздуха, сливной патрубок в нижней части контактной емкости. Между цилиндрической и конусообразной частями корпуса контактной емкости в горизонтальной плоскости размещена решетка. Над контактной емкостью размещена оросительная камера с рядами форсунок, подпитываемых через коллектор жидкостью из контактной емкости с помощью циркуляционного насоса. Над форсунками размещен сепаратор с патрубком вывода чистого воздуха. На верхней части контактной емкости между патрубком ввода и корпусом оросительной камеры установлено полое вращающееся тело с лопастями, установленное вертикально эксцентрично с погружением в верхнюю часть жидкости. В полости вращающегося тела размещен нагревательный элемент, а в области воздушного зазора вращающееся тело выполнено с теплоизолирующим воздушное пространство покрытием. В качестве жидкости используется либо водный раствор гашеной извести, либо масляный водный раствор едкого калия или натрия. Технический результат: упрощение конструкции, повышение эффективности очистки воздуха из помещений, обеспечение оперативного сбора фенола и дальнейшего его использования в виде фенолятов. 4 ил.

Изобретение относится к технике прессования, в частности к устройствам двухстороннего прессования порошков, но преимущественно пористых материалов с малой насыпной плотностью, типа терморасширенного графита, для получения прутков, стержней различного диаметра и композиции, содержащей металлическую втулку с уплотненным в ней терморасширенным графитом для получения электрода. Устройство для прессования порошков включает пресс-форму мундштучного формования прутков, матрицу цилиндрической формы, закрепленную с обоймой, и пуансон. Дополнительно оно снабжено второй аналогичной пресс-формой, при этом пресс-формы расположены соосно и соединены металлической втулкой и направляющими стержнями. В качестве металлической втулки использована электропроводная трубка. Обоймы выполнены разъемными и дополнительно имеют полости цилиндрической формы для размещения в них матриц, сопряженные с большим основанием конусной части отверстий обойм. Пуансоны снабжены съемными ограничителями перемещения в обоймах в направлении от торцов к центральной части под углом, а втулка, как элемент устройства, выполнена с гладкой внутренней поверхностью. Технический результат, достигаемый при использовании изобретения, заключается в возможности получения монолитного электропроводящего изделия в виде прутка из терморасширенного графита (ТРГ) или электропроводящей композиции, содержащей ТРГ в металлической оболочке с равномерным распределением свойств, и повышения адгезионной связи между компонентами композиции; а также расширения технологических возможностей устройства. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области машиностроения, в частности к горнодобывающей и строительной отраслям. Технический результат - расширение конструктивных и функциональных возможностей, снижение энергоемкости процесса разрушения, увеличение работоспособности резца и резцедержателя. Устройство для крепления резцов включает закрепленный на исполнительном органе корпус резцедержателя, выполненный с выступающей частью перед резцом, с отверстием под резец, резец, жестко закрепленный в корпусе резцедержателя и отверстием под вставной элемент, вставной элемент, соединяющий исполнительный орган с корпусом резцедержателя. Корпус резцедержателя выполнен монолитным, в выступающей перед резцом части корпуса резцедержателя выполнено сквозное отверстие с заглушкой сверху, в которое впрессована подшипниковая втулка. В качестве вставного элемента выполнена ось крестообразной формы в сечении, горизонтальная составляющая которой - упор, жестко закрепленный на исполнительном органе сваркой. Корпус резцедержателя закреплен на оси крестообразной формы в сечении с возможностью поворота относительно оси на заданный угол в вертикальном сквозном отверстии. Ось крестообразной формы в сечении установлена в корпусе резцедержателя с эксцентриситетом относительно кромки резца. На боковой поверхности оси над горизонтальной составляющей выполнена круговая проточка под фиксатор в виде пружинной чеки, жестко закрепленной в пазах корпуса резцедержателя. 6 ил.

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Устройство для экструдирования композиции из полимера и графита содержит полую обойму цилиндрической формы, в которую вставлена цилиндрической формы полая матрица с пуансоном цилиндрической формы в ней. Обойма выполнена из верхней части в виде П-образной полости и нижней рабочей части. Высота рабочей части обоймы, количество, диаметр сквозных отверстий и расстояние между отверстиями регулируются в зависимости от задаваемой величины электропроводности экструдируемых изделий. Пуансон выполнен переменного сечения в виде двутавровой балки, его верхняя горизонтальная часть выполнена в виде кругового упора, ограничивающего перемещение пуансона в матрице, с диаметром, превышающим диаметр матрицы, а нижняя горизонтальная часть выполнена съемной в двух вариантах: в виде круговой опоры диаметром, равным диаметру полости матрицы, или в виде такой же круговой опоры со стержнями, размещенными в ее нижней части соосно сквозным отверстиям с возможностью вхождения в отверстия. Техническим результатом устройства по изобретению является повышение его производительности для получения изделий, обладающих электропроводящими свойствами из композиции, содержащей полимер и графит. 8 ил.

Изобретение относится к электропроводящим полимерным композициям и может быть использовано в качестве электропроводного материала при изготовлении труб, прутков, пленок и т.д. Композиция содержит полиэтилен высокой плотности в виде порошка с размером частиц 0,5-1 мм, терморасширенный графит с насыпной плотностью 0,2-0,25 г/см3 и глицерин. Причем терморасширенный графит и глицерин содержатся в композиции в количестве 7-12 мас.% и 3-12 мас.%, соответственно. Композиция по изобретению обладает хорошей технологичностью, высокой электропроводностью и пониженным электросопротивлением вне зависимости от способа получения изделия. 2 табл.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных перемещений образца под воздействием температуры из различных материалов и для определения содержания углерода в углеродистых сталях. Дилатометр содержит измерительный узел и нагревательную печь, подключенную к блоку регистрации температуры и блоку управления температурой. Измерительный узел и нагревательная печь установлены горизонтально. Измерительный узел включает индикаторную головку с неподвижной и подвижной осями, соединенный с ее подвижной осью толкатель, выполненный в виде монолитного цилиндра из кварца с диаметром, равным внутреннему диаметру кварцевой пробирки, и с плоской нижней торцевой поверхностью, контактирующей с образцом, кварцевую пробирку для исследуемого образца, установленную в нагревательную печь. В кварцевой пробирке размещен кварцевый упор с диаметром, равным внутреннему диаметру кварцевой пробирки, контактирующий с образцом. Индикаторная головка и кварцевая пробирка соединены переходником, выполненным в виде полового цилиндра. На торце переходника со стороны крепления кварцевой пробирки установлен ограничитель, выполненный в виде кольца. Переходник установлен с возможностью перемещения вдоль оси кварцевой пробирки и образования зазора между нагревательной печью и ограничителем переходника. Технический результат - повышение точности определения температурного коэффициента линейного расширения образцов, изготовленных из различных материалов, и расширение функциональных возможностей устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к устройствам для определения насыпной плотности пористых, рыхлых волокон или волокноподобных материалов, легко делящихся на фрагменты и сцепляемых друг с другом и соответственно не ссыпаемых в мерный цилиндр через стандартную воронку. Устройство содержит мерный цилиндр, выполненный по ГОСТу 1770, воронку стеклянную с цилиндрической частью, выполненную по ГОСТу 25336 и размещенную над мерным цилиндром, емкость с исследуемым материалом, сопло, закрепленное на штативе шарнирно или гибким элементом с возможностью перемещения по штативу. Емкость с исследуемым материалом выполнена переменного сечения из двух частей, плавно переходящих одна в другую, причем одна часть выполнена шарообразной формы, вторая часть - в виде куполообразного козырька, имеющего открытое круглое основание, плотно соединенное с большим основанием воронки, в нижней боковой части куполообразного козырька емкости выполнено сквозное отверстие. Сопло установлено на штативе с возможностью вхождения его выходной части в упомянутое сквозное отверстие емкости, причем выходная часть сопла выполнена с возможностью перемещения в емкости под разными углами, а часть шарообразной формы емкости, примыкающая к основанию куполообразного козырька, является приемником поступающих при отборе проб исследуемых элементов материала. Техническим результатом является обеспечение возможности провести достоверно, оперативно, экологически чисто определение насыпной плотности пористого материала в виде короткого прямого волокна, например, асбеста или пористого волокноподобного в виде червячка материала, например терморасширенного графита, основываясь на ГОСТ Р 50019.1-92 (Графит. Метод определения насыпной плотности). 3 ил.

Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния, морфологии поверхности образцов из композиций, содержащих графит, например в графитопластах (с термопластом или реактопластом в качестве связующего). Способ включает предварительную механическую заторцовку круговыми движениями исследуемой поверхности, ее шлифовку мелкозернистой алмазной пастой круговыми движениями на гладкой поверхности, а также полировку, очистку и исследование поверхности образца с помощью оптического микроскопа в светлом поле. Исследуемую поверхность заторцовывают крупнозернистым графитом, нанесенным на лишенную волокон поверхность бывшей в употреблении абразивной шкурки, имеющей бумажную основу. После этого поверхность шлифуют, используя лишенную волокон поверхность бывшей в употреблении абразивной шкурки, имеющей бумажную основу, с нажимом на шкурку, обеспечивающим исчезновение визуально обнаруживаемых рисок на шлифуемой поверхности. Затем полируют шлиф, не касаясь контртела, мелкозернистой алмазной пастой, которую предварительно наносят на поверхность шлифа или на поверхность контртела слоем толщиной, обеспечивающей эффект закручивания пасты между контактирующими поверхностями при круговом движении контртела или шлифа относительно друг друга в контакте со слоем алмазной пасты. При этом круговые движения контртело или шлиф совершают с периодической сменой направления и полировку проводят до выявления структурных составляющих композиции и полного отсутствия рисок. Далее очищают поверхность образца от алмазной пасты круговыми движениями подушечек обезжиренных пальцев рук и исследуют структуру составляющих композиции вначале в светлом поле, а затем при косом освещении. Изобретение позволяет расширить функциональные возможности способа за счет сохранения морфологии составляющих композиции и повышения качества обработки и исследования поверхности шлифа.

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2. Загрузочный бункер 1 выполнен в виде закрытой камеры, в которой вертикально размещен ротор 3 с элементами измельчения 4. Элементы измельчения 4 выполнены в виде спиралеобразных петель с гладкой поверхностью и установлены с возможностью разнонаправленного вращения относительно друг друга. К загрузочному бункеру 1 подведен загрузитель 5, выполненный в виде трубопровода с размещенным внутри поршнем 6. Камера размола 2 размещена соосно под загрузочным бункером 1. В камере размола 2 на вертикальном валу размещен ротор 7, а элементы измельчения 8 выполнены в виде многорядной системы горизонтально закрепленных ножей. В изобретении обеспечивается повышение производительности измельчения материалов, имеющих малую насыпную плотность. 2 з.п. ф-лы, 7 ил.

Изобретение относится к технике дозирования жидких сред и предназначено для использования в химической, нефтеперерабатывающей и нефтегазодобывающей промышленностях. Насос-дозатор содержит электродвигатель, снабженный блоком управления и соединенный с передаточным механизмом. Насосная секция содержит корпус, рабочее колесо. Гидроцилиндр передаточного механизма содержит корпус, имеющий полую крышку, в которой закреплен подпружиненный шток, соединенный с поршнем, выполненным с возможностью возвратно-поступательного перемещения. На крышке гидроцилиндра закреплен дозатор, содержащий плунжер, соединенный с подпружиненным штоком. Электродвигатель и передаточный механизм соединены через переходник, имеющий корпус, закрепленный на корпусе насосной секции. В корпусе переходника вал электродвигателя соединен с валом-муфтой, на котором жестко установлено рабочее колесо. Вал-муфта размещен и уплотнен в сквозном отверстии, выполненным в верхней части корпуса насосной секции. Корпусы насосной секции и гидроцилиндра соединены с помощью отводящих трубопроводов, на которых закреплены шаровые клапаны. Блок управления дополнительно содержит элементы обратной связи, включающие датчик крутящего момента, установленный в корпусе переходника электродвигателя, датчик температуры, расположенный на корпусе гидроцилиндра, датчики расхода жидкости, установленные на отводящих трубопроводах, датчик перемещения плунжера, установленный на переходнике дозатора и датчик измерения давления, установленный на выходе дозатора. Достигается повышенная надежность работы за счет многомодульной компоновки разъемных элементов конструкции и блока управления. 2 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике, а именно к устройствам для определения физико-механических свойств образцов. Реверсор содержит попарно соединенные направляющими колонками внешние и внутренние траверсы с отверстиями, силовой шток и две соединительные втулки, установленные в отверстиях траверс и связанные с внешними траверсами. Между внутренними траверсами на направляющих колонках неподвижных траверс дополнительно установлена направляющая траверса с отверстием в центре под силовой шток. На силовом штоке закреплен плоский элемент, выполненный в виде 3-х лучевой звезды. Силовой шток выполнен с возможностью замены и соединен с плоским элементом. Над внутренней неподвижной траверсой и под внутренней подвижной траверсой размещены жестко соединенные с ними Т-образные площадки. В центре Т-образной площадки неподвижной внутренней траверсы закреплен опорный стол для испытуемого образца, на этой же площадке установлен теплоизолированный от траверс нагревательный элемент. В центре Т-образной площадки подвижной внутренней траверсы снизу жестко закреплен шар для самоцентровки силового штока и плоского элемента. На нижней поверхности внутренней неподвижной траверсы под лучами плоского элемента жестко закреплены три Г-образные державки с установленными на них датчиками перемещения. Технический результат: расширение функциональных возможностей реверсора за счет возможности исследований физико-механических свойств образцов из любого материала при температуре выше комнатной. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области материаловедения, в частности к способам определения в образцах после однократного ударного нагружения зон пластического деформирования под изломом, и может быть использовано для оценки изменения свойств в сталях вблизи развивающейся трещины, поэтапно или после разрушения образца, контроля причин разрушения изделия и при диагностике в технической экспертизе. Сущность: используют образец типа 15 по ГОСТ 9454-78, после разрушения образца однократным ударным воздействием по виду излома определяют степень вязкости исследуемого материала образца. Обе части образца делят по центру в направлении от поверхности излома вдоль длины частей образца. Исследуют зону пластической деформации под изломом и вглубь образца во вновь образовавшихся поверхностях в условиях плоскодеформированного состояния развития трещины, а в боковых поверхностях, параллельных вновь образовавшимся, в условиях плосконапряженного состояния, для этого в двух частях образца на исследуемые поверхности в направлении от поверхности излома по ширине и длине исследуемой части образца наносят отпечатки в виде дорожек индентором, причем величину нагрузки выбирают таким образом, чтобы деформация была преимущественно упругой, шаг между отпечатками и расстояние между дорожками были не менее трех диагоналей отпечатка. Определяют микротвердость в отпечатках, определяют границу зоны пластического деформирования по переходу, отделяющему уровень микротвердости в зоне пластического деформирования от уровня микротвердости недеформированной части и определяют зону пластического деформирования под изломом по формуле. В третьей части образца, на исследуемых поверхностях, проводят травление в травителе, выявляющем соответствующую микроструктуру в зонах пластического деформирования под изломом и в недеформированных участках в условиях формирования плосконапряженного и плоскодеформированного состояний соответственно. Четвертую часть образца используют в качестве резервной. Технический результат: обеспечение возможности комплексного исследования на одном образце всей зоны пластического деформирования под изломом, полученной в результате однократного ударного нагружения образца. 8 ил.

Изобретение относится к устройствам для изготовления изделий методом экструдирования
Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния графита в сплавах, например сером чугуне, и полимерных композициях, содержащих графит, например в графитопластах, содержащих терморасширенный графит

Изобретение относится к технике прессования

Изобретение относится к технике прессования

Изобретение относится к устройствам для очистки воздуха от пыли, химических примесей, аэрозолей

Изобретение относится к способам очистки воздуха от загрязнений в закрытых помещениях

Изобретение относится к определению небольших количеств вещества с использованием химических индикаторов

Изобретение относится к методам оценки структурной неоднородности полимеров, в частности к способу выявления макронеоднородности структуры эластомеров

Изобретение относится к технике подготовки исследуемого материала, к изучению его микроструктуры с использованием оптики, и может быть использовано как способ послойного контроля структурного состояния металлов и сплавов, стекол, строительного материала после получения изделий, в процессе эксплуатации и установления причин внезапного разрушения изделий

Изобретение относится к испытательной технике

 


Наверх