Патенты автора Бирюк Владимир Васильевич (RU)

Изобретение относится к двигательным ракетным системам для малоразмерных космических аппаратов (МКА) и предназначено для использования в качестве маневрового управления матрицей микродвигателей малоразмерных космических аппаратов. Предлагается способ работы матрицы твердотопливных реактивных микродвигателей с возобновляемым топливным наполнением, основными элементами которой являются плоская круглая подложка с установленными на каждой из ее горизонтальных и вертикальных поверхностей по меньшей мере четырьмя микродвигателями. Тяга микродвигателей, установленных на нижней и верхней горизонтальных поверхностях подложки, используется соответственно для ускорения или для торможения космического аппарата, а тяга микродвигателей на ее вертикальной поверхности используется для его поворотов. В способе используют многократную пневматическую или иную подачу топливных капсул в камеры сгорания отработавших микродвигателей. Матрицу снабжают дополнительными пневматическим или иными топливными заправочными устройствами, двумя горизонтальными и одной вертикальной вращающимися кольцевыми лентами. Первая и вторая ленты установлены соответственно перед камерами сгорания микродвигателей, используемых для ускорения или торможения космического аппарата, а третью вертикальную ленту устанавливают перед камерами сгорания микродвигателей, служащих для поворотов космического аппарата. На поверхностях каждой ленты имеются отверстия и огнеупорные кремневые пластины. Отверстия используют для подачи топливных капсул в камеры сгорания, а кремневые пластины - для закрытия камер сгорания с топливными капсулами. Изобретение обеспечивает периодическую подачу в камеру сгорания микродвигателя топливных капсул и регулирование вектора и величины тяги микродвигателя. 1 ил.

Способ работы газотурбинного газоперекачивающего агрегата компрессорной станции магистрального газопровода предусматривает выработку перегретого пара высокого давления за счет тепла газопарового рабочего тела расширенного в турбине, его смешение с подогретым природным газом, подаваемым из магистрального газопровода с получением метаносодержащей смеси, ее подогрев теплом расширенного рабочего тела, метаносодержащую смесь подают в первый адиабатический каталитический реактор с образованием метано-водородной смеси содержащей 5-6% водорода, подогрев этой смеси во втором каталитическом реакторе 620-680°С с увеличением в ней доли водорода до 25%, использование меньшей части этой смеси в качестве топлива газоперекачивающего агрегата, охлаждение большей части метано-водородной смеси до 35-40°С и ее подачу в магистральный газопровод. Изобретение позволяет использовать полученную метано-водородную смесь в качестве топлива газоперекачивающего агрегата, а также для ее подачи в магистральный газопровод. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике, в частности к ракетам, имеющим головную часть, маршевый пульсирующий прямоточный воздушно-реактивный двигатель и разгонный твердотопливный двигатель. Маршевый двигатель имеет входной диффузор, блок пульсирующих камер сгорания, выходное реактивное сопло. Блок пульсирующих камер сгорания имеет четыре неподвижные горизонтальные камеры сгорания, первый и второй вращающиеся клапанные диски, установленные перед и за камерами сгорания и связанные общим валом, топливную систему, систему управления. Между входным диффузором и первым клапанным диском размещены поворотные сопловые лопатки и вращающиеся рабочие лопатки, установленные на общем валу. Топливный бак соединен с камерами сгорания через топливный клапан, внутреннюю полость общего вала и неподвижный блок подачи топлива в камеры сгорания. Система управления связана импульсными линиями с датчиком числа оборотов, топливным клапаном, устройством поворота сопловых лопаток и обеспечивает синхронизацию числа оборотов вращающихся клапанных дисков, процессов подачи топлива и его зажигания в каждой камере сгорания. Достигается упрощение конструкции. 5 ил.

Газоперекачивающий агрегат компрессорной станции содержит компрессор, камеру сгорания, силовую газовую турбину, нагнетатель природного газа, регенеративный воздухоподогреватель и субатмосферную утилизационную энергетическую установку; перед компрессором приводной газотурбинной установки установлен аппарат М-цикла с «сухим» и «влажным» воздушными каналами, разделенными металлической стенкой, покрытой со стороны «влажного» воздушного канала гидрофильной поверхностью, смачиваемой водой. При работе в летнем режиме выход «влажного» связан воздуховодом с входом регенеративного воздухоподогревателя, выход которого связан с входом турбины субатмосферной утилизационной энергетической установки; ее выход через теплообменную поверхность воздухоохладителя-конденсатора и компрессор связан с атмосферой; вход гидрофильной поверхности связан с входным трубопроводом воды с насосом, а ее выход соединен трубопроводом охлаждающей воды с теплообменной поверхностью воздухоохладителя-конденсатора. Разбрызгивающее устройство установлено на входе воздуха в регенеративный воздухоподогреватель; трубопровод обвода гидрофильной поверхности аппарата М-цикла связывает входной трубопровод воды с трубопроводом охлаждающей воды, трубопровод подачи конденсата в разбрызгивающее устройство связывает корпус воздухоохладителя-конденсатора с разбрызгивающим устройством; на входном трубопроводе воды, на трубопроводе обвода гидрофильной поверхности аппарата М-цикла и на трубопроводе подачи конденсата в разбрызгивающее устройство дополнительно установлены запорные задвижки. 1 ил.

Изобретение относится к области транспорта газа по магистральным газопроводам и может быть использовано для повышения мощности и экономичности установки с газоперекачивающим агрегатом. Комбинированная установка с газоперекачивающим агрегатом и субатмосферной энергетической установкой содержит газоперекачивающий агрегат с компрессором, камерой сгорания, газовой турбиной, регенеративным воздухоподогревателем, нагнетателем природного газа, и субатмосферную энергетическую установку, содержащую газовую турбину, камеру сгорания, аппарат М-цикла, компрессор, электрогенератор; аппарат М-цикла, установленный между газовой турбиной и компрессором, имеет два «сухих» и один «влажный» каналы, разделенные металлическими стенками, поверхности которых покрыты инфильтрационным слоем, смачиваемым водой. Дополнительно применены устройство воздухоочистки и смешения, установленное перед компрессором газоперекачивающего агрегата и связанное через дополнительный трубопровод влажного воздуха с выходом «влажного» канала аппарата М-цикла, связанного с субатмосферной энергетической установкой, при этом вход поверхности нагрева регенеративного воздухоподогревателя связан с атмосферой, а его выход связан с камерой сгорания субатмосферной энергетической установки. 1 ил.

Изобретение относится к области энергетики, в частности к контактным энергетическим газотурбинным установкам. Способ работы контактной газотурбинной установки на метановодородной парогазовой смеси заключается в том, что в ее камеру сгорания подают сжатый в компрессоре воздух и метаносодержащую парогазовую смесь, продукты сгорания расширяют в газовой турбине, их теплоту используют для выработки перегретого пара высокого давления. Конденсируют пар низкого давления, содержащийся в охлажденных продуктах сгорания, конденсат пара используют для выработки перегретого пара высокого давления, большую часть этого пара подают в камеру сгорания, а его меньшую часть смешивают с природным газом из магистрального газопровода. Полученную газопаровую смесь нагревают теплом расширенных в газовой турбине продуктов сгорания до температуры 500-550°С и подают в камеру сгорания. Меньшую часть перегретого пара и природного газа смешивают при весовом соотношении 7:1 и давлении 2,5-3 МПа. В первую ступень камеры сгорания - предкамеру подают сжатый воздух, в газовую горелку предкамеры подают и зажигают природный газ, в ее рубашку охлаждения, содержащую капсулы никелевого катализатора, подают газопаровую смесь, нагревают до 620-680°С, используя теплоту рубашки охлаждения, на содержащемся в ней катализаторе осуществляют паровую каталитическую конверсию газопаровой смеси с образованием метановодородной смеси, содержащей до 5% водорода. Полученную метановодородную смесь подают в предкамеру, эту смесь последовательно смешивают с сжатым воздухом и с продуктами сгорания газовой горелки, полученную «богатую» метановодородную смесь подают в предкамеру, ее последовательно смешивают с сжатым воздухом и с продуктами сгорания газовой горелки и сжигают при коэффициенте избытка воздуха 0,6-0,7, при этом долю водорода, за счет высокотемпературной паровой конверсии метана, повышают в продуктах сгорания до 15-20%, температуру продуктов сгорания устанавливают на уровне 1300-1350°С, затем в них подают сжатый воздух и получают «бедную» топливовоздушную смесь, которую сжигают в камере дожигания, температуру продуктов сгорания повышают до 1950-2000°С, подают в них сжатый воздух и перегретый пар и устанавливают требуемую температуру газа перед газовой турбиной. Изобретение позволяет повысить надежность и снизить стоимость газотурбинной установки. 2 ил.

Способ работы подогревателя газа с промежуточным теплоносителем газораспределительной станции, согласно которому газ из магистрального газопровода нагревают до 80-100°С в подогревателе газа с промежуточным теплоносителем с унифицированной газовой горелкой, расширяют в дросселе, большую часть этого газа подают в выходной газопровод, а его меньшую часть используют в качестве топливного газа в унифицированной газовой горелке, температуру подогрева газа высокого давления и давление расширенного газа регулируют с учетом расхода газа высокого давления газораспределительной станции; в подогревателе применяют унифицированную горелку и дополнительный автономный каталитический риформер топлива (генератор синтез-газа); как при номинальном, так и при уменьшенном расходе газа, в зоне диффузионного горения горелки сжигают топливный газ, а в ее основную зону подают из генератора синтез-газа 32-35% водорода (Н2), 16-18% СО и 52-47% азота, при этом в основной зоне горения производят сжигание бедной топливо-воздушной смеси, а регулирующим устройством поддерживают в генераторе синтез-газа требуемое соотношение вырабатываемых Н2 и СО. 2 н.п. ф-лы, 1 ил.

Камера сгорания с выносными секциями жаровых труб газотурбинной установки, содержащих малоэмиссионное горелочное устройство с двухконтурными горелками, образующими дежурную и основную зоны горения хорошо перемешанной гомогенной смеси. Каждая секция камеры сгорания имеет три коллектора топливоподачи, воспламенитель и датчик контроля пламени. Для уменьшения трудоемкости изготовления конструкция двухконтурной горелки приспособлена к технологии селективного лазерного сплавления. Эффективная работа камеры сгорания и снижение эмиссии вредных веществ обеспечивается многокаскадной подачей топлива в три коллектора по специальной программе. 4 ил.

Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода содержит приводную газотурбинную установку и субатмосферную утилизационную энергетическую установку, работающую по обратному циклу Брайтона. Дополнительно в ней применены аппарат М-цикла, воздухоохладитель-конденсатор, трубопровод отвода конденсата с насосом. Аппарат М-цикла установлен на входе атмосферного воздуха в компрессор приводной газотурбинной установки, содержащий «сухой» и «влажный» воздушные каналы, разделенные металлической стенкой, покрытой гидрофильной поверхностью, смачиваемой водой. Атмосферный воздух подают в «сухой» и «влажный» каналы. За счет испарения воды из гидрофильной поверхности понижается температура металлической стенки, в «сухом» канале охлаждается воздух, подаваемый в компрессор приводной газотурбинной установки. Во «влажном» канале воздух охлаждается и увлажняется, затем нагревается в регенеративном воздухоподогревателе, расширяется в турбине субатмосферной утилизационной энергетической установки, охлаждается в воздухоохладителе за счет воды, не испарившейся из гидрофильной поверхности, сжимается в компрессоре и сбрасывается в атмосферу. Работу турбины используют для сжатия влажного воздуха в компрессоре и выработки электроэнергии в электрогенераторе. За счет использования в аппарате М-цикла энергии атмосферы и психрометрической разности температур влажного и сухого воздуха происходит повышение тепловой экономичности и мощности приводной газотурбинной установки и электрической мощности и тепловой экономичности субатмосферной утилизационной энергетической установки. 1 ил.

Изобретение касается способа получения водородсодержащего газа из природного газа и перегретого пара, который осуществляют в три этапа: на первом этапе перегретый пар высокого давления смешивают с природным газом при 2,5-3 МПа, при весовом соотношении пара и природного газа 7:1, полученную парометановую смесь нагревают до температуры 500-550°С теплом уходящих газов газовой турбины, подают в адиабатический каталитический реактор, производят паровую каталитическую конверсию метана в никелевом катализаторе, с образованием в каталитическом реакторе парометаново-водородной смеси, содержащей до 5% доли водорода; на втором этапе эту смесь и закрученный поток сжатого воздуха подают в форкамеру, в горелку подают топливный природный газ, полученную «богатую» топливно-воздушную смесь сжигают при коэффициенте избытка воздуха 0,6-0,7, повышая температуру продуктов сгорания до 1300-1350°С и увеличивая долю водорода до 15-20% вследствие высокотемпературной паровой конверсии метана; на третьем этапе в камере дожигания сжигают «бедную» топливно-воздушную смесь при коэффициенте избытка воздуха 1,5-2,5 и повышают долю водорода в продуктах сгорания выше 20%, в ее продукты сгорания подают разбавляющий сжатый воздух и снижают до требуемой температуру газа перед газовой турбиной. Также изобретение касается устройства для реализации способа. Технический результат - увеличение содержания водорода в топливном газе газотурбинных установок и значительное улучшение их топливной экономичности, а также экологичности за счет существенного снижения содержания вредных веществ в выхлопных газах газовых турбин. 2 н.п. ф-лы, 1 ил.

Способ работы компрессорной станции магистральных газопроводов, содержащей электроприводные и газотурбинные газоперекачивающие агрегаты, дополнительную высокооборотную газотурбодетандерную энергетическую установку, согласно которому полезную работу турбодетандера используют для привода компрессора; топливный газ из магистрального газопровода расширяют в турбодетандере и подают в камеры сгорания высокооборотной газотурбодетандерной энергетической установки и газотурбинных газоперекачивающих агрегатов. При этом большую часть электроэнергии, выработанной в электрогенераторе газотурбодетандерной энергетической установки, подают для питания и частотного регулирования оборотов и мощности высокооборотных электродвигателей электроприводных газоперекачивающих агрегатов, а меньшую часть используют для энергоснабжения собственных нужд компрессорной станции и для подачи во внешние электрические сети. 1 ил.

Группа изобретений относится к установкам для получения пресной воды из атмосферного воздуха. В пневмоэкстракторе в качестве рабочего тела используется сжатый воздух, источниками которого могут быть вентиляторы, воздуходувки, тепловые пушки, пневмокомпрессоры и т.п., а также термопреобразователи воздушного потока в виде делящего вихревого охладителя, самовакуумирующейся вихревой трубы, теплового насоса или тепловой трубы. Варианты сочетания конструктивных элементов источника воздушного потока и термопреобразователя определяются с учетом климатических условий конкретной местности размещения пневмоэкстрактора атмосферной влаги. Пневмоэкстрактор атмосферной влаги работает следующим образом. Поток сжатого газа (воздуха) от источника сжатого воздуха поступает на размещенный в камере экстракции влаги термопреобразователь и радиатор для охлаждения воздуха. Холодные элементы термопреобразователя (поток холодного воздуха, охлажденный медный стержень или испарители тепловой трубки или теплового насоса) охлаждают радиатор для охлаждения воздуха и из воздуха, подаваемого в радиатор, конденсируется влага, поступающая далее в водосборник. Использование группы изобретений позволит получить пресную воду путем экстракции влаги из атмосферного воздуха в регионах с недостатком природных источников пресной воды. 4 н.п. ф-лы, 4 ил.

Изобретение относится к области транспорта газа по магистральным газопроводам. Комбинированная энергетическая газотурбодетандерная установка компрессорной станции магистрального газопровода, состоящая из приводной газотурбинной установки, содержащей газогенератор, силовую газовую турбину, нагнетатель природного газа. Регенеративный теплообменный аппарат установлен в выхлопном газоходе силовой газовой турбины. Энергетическая газотурбинная установка содержит камеру сгорания, газовую турбину, электрогенератор, дополнительный теплообменный аппарат, установленный в выхлопном патрубке газовой турбины, и компрессор. Компрессор связан через напорный воздуховод с камерой сгорания энергетической газотурбинной установки первым трубопроводом сжатого воздуха через регенеративный теплообменный аппарат приводной газотурбинной установки, а так же вторым трубопроводом сжатого воздуха - через дополнительный теплообменный аппарат. Газотурбодетандерная установка дополнительно снабжена турбодетандером, выполненным с управляемым сопловым направляющим аппаратом и связанным валом с компрессором газотурбинной энергетической установки, подогревателем топливного газа высокого давления, подогревателем топливного газа среднего давления, трубопроводом горячего теплоносителя, трубопроводом охлажденного теплоносителя с насосом. Устройство управления, связанное через импульсные линии с управляемым сопловым аппаратом турбодетандера, позволяющим поддерживать требуемое давление в газопроводе топливного газа среднего давления. Дополнительный теплообменный аппарат снабжен регенеративной поверхностью, служащей для подогрева сжатого воздуха, подаваемого в камеру сгорания энергетической газотурбинной установки, и поверхностью подогрева теплоносителя, подаваемого в подогреватель топливного газа высокого давления и топливного газа среднего давления. Изобретение позволяет повысить тепловую экономичность комбинированную утилизационной энергетической газотурбинной установки компрессорной станции. 1 ил.

Изобретение относится к газовой промышленности, а точнее к газовым турбинам газоперекачивающих агрегатов компрессорных станций. Метаносодержащую смесь природного газа и воздуха из компрессора газотурбинной установки, сжатую в струйном компрессоре, нагревают в конвективном подогревателе теплом выхлопных газов газовой турбины и направляют в каталитический реактор, выполняющий функцию генератора синтез-газа и расположенный в рубашке охлаждения камеры сгорания. Полученную в нем смесь водорода и монооксида углерода подают в камеру сгорания, что позволяет в несколько раз снизить содержание вредных веществ в выхлопных газах, значительно улучшить экологические и экономические характеристики газоперекачивающего агрегата. Данное техническое решение позволяет повысить интенсивность теплообмена и охлаждения газа в змеевике газоохладителя, а также упростить и удешевить конструкцию устройства. 1 ил.

Изобретение относится к энергетике. Установка содержит основную противодавленческую паровую турбину, компрессор, дополнительную противодавленческую паровую турбину, камеру сгорания, газовую турбину, эластичную расцепную муфту, электрогенератор, паропровод перегретого пара, первый выхлопной паропровод, второй выхлопной паропровод, дополнительный паропровод перегретого пара, запорный орган, котел-утилизатор, сетевой подогреватель первой ступени, сетевой подогреватель второй ступени, пароперегреватель, испаритель второй ступени, камеру дожигания топлива, испаритель первой ступени, экономайзер, конденсатопровод, паропровод, деаэратор, трубопровод питательной воды с питательным насосом, газоводяной подогреватель, прямой трубопровод сетевой воды теплосети, обратный трубопровод сетевой воды теплосети. Изобретение позволяет создать экономичную теплофикационную парогазовую установку с паровым приводом компрессора с хорошей адаптацией при работе в отопительные периоды года при изменяющейся тепловой нагрузке теплофикационных потребителей. 1 ил.

Изобретение относится к области энергетики и машиностроения. Устройство для гидродинамического эмульгирования и активации жидкого топлива содержит гидродинамический кавитационный аппарат эмульгатора, состоящий из трубопровода обрабатываемого жидкого топлива, трубопровода добавляемой жидкости, цилиндрического корпуса эмульгатора с верхней и средней кольцевыми полостями и внутренней полостью, верхняя и средняя кольцевые полости связаны тангенциальными соплами с внутренней поверхностью корпуса эмульгатора, трубопровод жидкого топлива соединен с верхней кольцевой полостью эмульгатора, которая через тангенциальные сопла жидкого топлива связана с его внутренней полостью, трубопровод дополнительной жидкости соединен патрубком со средней кольцевой полостью эмульгатора, которая через тангенциальные сопла добавочной жидкости связана с внутренней полостью корпуса эмульгатора, которая связана с входом трубопровода кавитационной зоны, выход трубопровода кавитационной зоны соединен с установкой активизации процессов, имеющей рабочую трубу из немагнитного материала с рабочим телом - ферромагнитными иголками, и наружный электромагнитный индуктор, дополнительной жидкостью является вода, атмосфера связана тангенциальными воздушными соплами с внутренней частью трубопровода кавитационной зоны. Изобретение позволяет повысить эффективность сгорания жидкого топлива. 2 ил.

Изобретение относится к энергетике. Энергетическая установка содержит магистральный газопровод природного газа, воздухоразделительную установку для производства кислорода, электроприводные компрессоры для сжатия кислорода и природного газа, пароструйные компрессоры, два адиабатических реактора паровой конверсии метана, твердотопливный паровой котел, высокотемпературный пароперегреватель высокого давления, высокотемпературную конденсационную парогазовую турбинную установку с конденсатором, вихревой разделитель пара и углекислого газа, газовую турбину. Кислород, полученный в воздухоразделительной установке, сжимают в электроприводном компрессоре и подают в высокотемпературные камеры сгорания высокого и среднего давления. Природный газ из магистрального газопровода сжимают в электроприводном и пароструйном компрессоре, смешивают с перегретым паром, вырабатываемым паровым котлом. В первом адиабатическом реакторе конверсии при температуре 500°С получают метаносодержащую смесь пара с концентрацией водорода 5%. Подогрев этой смеси, подаваемой во второй каталитический реактор, до 620°С производят в рубашке охлаждения камеры сгорания высокотемпературного пароперегревателя высокого давления. Применение в установке двух адиабатических реакторов конверсии позволяет подавать в камеру сгорания высокого давления метано-водородную смесь с содержанием в ней водорода выше 20%. Изобретение позволяет повысить экономичность и улучшить экологичность энергетической установки. 1 ил.

Изобретение относится к области транспорта газа и может быть применено на компрессорных станциях (КС) магистральных газопроводов. Компрессорная станция снабжена электроприводными ГПА и регенеративными энергетическими газотурбинными установками с высокооборотными компрессорами, газовыми турбинами и электрогенераторами установленными на магнитных подшипниках и связанными между собой общими валами, их электрогенераторы связаны дополнительными шинопроводами с электрическими выключателями с высокооборотными синхронными электродвигателями по меньшей мере одного электроприводного ГПА, а также связаны шинопроводом через электронные преобразователи частоты с электрическими выключателями с электрооборудованием собственных нужд компрессорной станции, а также связаны через трансформатор с внешней высоковольтной линией электропередачи. 1 ил.
Изобретение относится к области предварительной обработки морской воды перед опреснением в адиабатном многоступенчатом опреснителе путем ее гидродинамической кавитационной обработки и активации атмосферным воздухом. Исходную морскую воду подают через тангенциальные сопла во внутреннюю часть гидродинамического кавитационного аппарата, и за счет образующегося разрежения в нее вводят атмосферный воздух с образованием при этом мелких воздушных пузырьков, что интенсифицирует окисление химических соединений, содержащихся в морской воде, прежде всего хлористого натрия и хлористого магния. После чего следует удаление из механического фильтра образовавшихся твердых компонентов. Затем очищенную морскую воду подают в адиабатный многоступенчатый опреснитель (испаритель). Технический результат – создание способа предварительной подготовки морской воды с ее очисткой перед осветлением.

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31. Изобретение позволяет повысить тепловую экономичность установки и обеспечить экономичное опреснение морской воды и выработку электроэнергии для энергоснабжения установки и внешних потребителей. 1 ил.

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19. Паровой котел-утилизатор 6 содержит экономайзер 10, испаритель и пароперегреватель. Выхлоп противодавленческой паровой турбины 4 соединен с входом подогревателя 8 морской воды, имеющего трубопровод рециркуляции 13 подогреваемой морской воды с насосом. Выход подогревателя 8 морской воды с экономайзером 10 котла-утилизатора 6. Выход пароперегревателя котла-утилизатора 6 соединен с противодавленческой паровой турбиной 4, регулируемый отбор пара высокого давления которой соединен с внешним подогревателем 20. Регулируемый отбор пара низкого давления соединен с верхней частью корпуса первой ступени адиабатного многоступенчатого испарителя. В верхней зоне последней ступени адиабатного многоступенчатого испарителя размещены подогреватель 22 предварительного подогрева холодной морской воды и конденсатор 26 вторичного пара. Трубопровод 30 отвода дистиллята внешним потребителям связан через химводоочистку 33 и трубопровод подпиточной воды 16 с входом деаэратора 7. Трубопровод 9 холодной морской воды установлен с возможностью разделения воды на два потока. Роторы газовой турбины газотурбинной установки 1 и противодавленческой паровой турбины 4 связаны валами с их электрогенераторами 2, 5. В ступенях многоступенчатого испарителя размещены нагревательные элементы - двухходовые кожухотрубные конденсаторы вторичного пара 24, жалюзийные сепараторы вторичного пара, приемники рассола, перепускные трубы дроссельно-распылительного устройства 28, сборные камеры дистиллята вторичного пара 25. Приемник рассола 31 последней ступени адиабатного многоступенчатого испарителя сообщен с трубопроводом отвода рассола 32. Изобретение позволяет повысить тепловую экономичность и надежность комбинированной установки, увеличить расход пара через паровую турбину, повысить электрическую мощность и выработку электроэнергии. 1 ил.

Изобретение относится к энергетике. Компрессорная станция магистрального газопровода состоит из приводного газоперекачивающего агрегата (ГПА), электроприводных ГПА и утилизационной энергетической газотурбинной установки (УЭГТУ). Приводной газоперекачивающий агрегат снабжен регенеративным теплообменным аппаратом в выхлопном газоходе. УЭГТУ имеет дополнительный регенеративный теплообменный аппарат в выхлопном газоходе. Выход компрессора УЭГТУ связан двумя трубопроводами сжатого воздуха с ее камерой сгорания, первый трубопровод связывает компрессор с камерой сгорания через регенеративный теплообменный аппарат приводного ГПА и трубопровод подогретого сжатого воздуха, второй трубопровод связывает компрессор с камерой сгорания УЭГТУ через дополнительный регенеративный теплообменный аппарат. Применение дополнительной электрической линии с электрическими выключателями, системы управления, импульсных линий, датчика расхода природного газа в магистральном газопроводе и устройства регулирования подачи топлива в камеру сгорания позволяет обеспечить работу двух электроприводных ГПА как при номинальной нагрузке, так и их работу на частичных нагрузках с частотным регулированием их электродвигателей. Пуск утилизационной энергетической газотурбинной установки с постепенным увеличением числа оборотов электрогенератора позволяет осуществлять плавные частотные пуски и повышение нагрузки неработающих электроприводных ГПА. Изобретение позволяет повысить электрическую мощность УЭГТУ, обеспечить работу электроприводных ГПА как при номинальных, так и при частных нагрузках, снизить себестоимость транспорта газа. 1 ил.

Изобретение относится к теплоэнергетике, а точнее к направлению опреснения морской воды и выработки электроэнергии. Установка содержит: газотурбинную установку 1 с компрессором, камерой сгорания и газовой турбиной, электрогенератор 2, паропровод 3 перегретого пара, паровую турбину 4 с регулируемыми отборами пара, электрогенератор 5, паровой котел-утилизатор 6 с пароперегревателем, испарителем и экономайзером, деаэратор 7, теплообменник 8 предварительного подогрева морской воды, трубопровод 9 морской воды, экономайзер 10, трубопровод питательной воды 11 с питательным насосом, паропровод 12, паропровод 13, паровой эжектор 14, вакуумный паропровод 15, паропровод 16 греющего пара, внешний теплообменник 17 первой ступени, трубопроводы 18 перепуска паровоздушной смеси, трубопровод 19 подогретой морской воды, трубопровод 20 подпиточной химочищенной воды, двухходовые кожухотрубные конденсаторы 21 вторичного пара, внешний теплообменник 22 второй ступени, жалюзийные сепараторы 23 вторичного пара, сборные камеры 24 дистиллята, трубопровод 25 дистиллята, трубопровод 26 подогретой морской воды, трубы 27 дроссельно-распылительного устройства, приемники рассола 28, химводоочистку 29, трубопровод 30 сброса рассола. Техническим результатом комбинированной установки является увеличение количества обессоленной воды, выработки электроэнергии и повышение ее тепловой эффективности. 1 ил.

Пульсирующий турбореактивный двигатель снабжен входным диффузором, компрессором, газовой турбиной, выходным реактивным соплом и блоком пульсирующих камер сгорания, электродвигатель постоянного тока с редуктором. Блок пульсирующих камер сгорания содержит неподвижные горизонтальные пульсирующие камеры сгорания, два вращающихся клапанных диска. Камеры сгорания снабжены входными воздушными и выходными газовыми окнами. Вращающиеся клапанные диски связаны общим валом, первый из них, установленный перед камерами сгорания, имеет воздушные, а второй, установленный за камерами сгорания, имеет газовые окна. Оси клапанных дисков совпадают с горизонтальной осью блока камер сгорания. Блок камер сгорания содержит четыре пульсирующие камеры сгорания, расположенные по окружности этого блока с углами между радиальными осями камер сгорания, равными 90°. Первый клапанный диск имеет четыре воздушных отверстия, радиальные оси которых расположены под углами 45°, 135°, 225° и 315°. Второй клапанный диск имеет четыре газовые отверстия, радиальные оси которых расположены под углами 0°, 90°, 180° и 270° относительно центральной вертикальной оси блока камер сгорания. Изобретение позволяет увеличить мощность, реактивную тягу, экономичность и надежность пульсирующего турбореактивного двигателя. 4 ил.

Способ работы газотурбодетандерной энергетической установки тепловой электрической станции заключается в том, что атмосферный воздух сжимают в компрессоре, подают в камеру сгорания, сжигают топливо, продукты сгорания расширяют в газовой турбине, полезную работу газовой турбины используют для выработки электроэнергии, полезную работу турбодетандера используют для привода компрессора. В газотурбодетандерной энергетической установке дополнительно применяют регенеративный воздухоподогреватель, дожимной газовый компрессор, теплообменник утилизации теплоты уходящих газов газовой турбины, при этом теплообменники подогрева газа высокого давления и утилизации теплоты уходящих газов выполняют газоводяными. Газоводяной теплообменник утилизации теплоты уходящих газов соединяют трубопроводами горячего и охлажденного теплоносителя с газоводяным теплообменником подогрева газа высокого давления и с газоводяным теплообменником подогрева газа пониженного давления. Небольшую часть газа из газопровода высокого давления 1,0-0,6 МПа сжимают в дожимном газовом компрессоре и с давлением 2,5-3 МПа подают в камеру сгорании. Большую часть газа высокого давления подогревают теплом горячего теплоносителя в газоводяном теплообменнике подогрева газа высокого давления, расширяют в турбодетандере до давления 0,13-0,15 МПа и температуры 3-5°С. Затем этот газ подогревают теплом горячего теплоносителя в газоводяном теплообменнике пониженного давления и по газопроводу пониженного давления подают в котельные агрегаты тепловой электрической станции. Теплоноситель, охлажденный в газоводяных теплообменниках подогрева газа высокого и пониженного давления, направляют для подогрева в газоводяной теплообменник утилизации теплоты уходящих газов газовой турбины. При изменении давления газа в газопроводе высокого давления систему управления давлением газа пониженного давления используют для изменения положения регулирующего соплового аппарата турбодетандера и поддержания постоянного давления газа в газопроводе пониженного давления, подаваемого в котельные агрегаты тепловой электрической станции. 1 ил.

Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром. Термосжатие пара в этих паровых емкостях производится с помощью электронагревателей. Сжатый пар направляют в испарительную установку периодически из первой и второй паровых емкостей. Отвод оставшегося пара из емкостей производят в трубопроводе подачи пара низкого давления, используя теплоту этого пара для нагрева морской воды. Управляющей системой с помощью запорных органов регулируют подачу, вывод и отвод пара из паровых емкостей. Технический результат заключается в улучшении эксплуатационных характеристик опреснительной установки. 2 н.п. ф-лы, 2 ил.

Теплофикационная парогазовая установка с паротурбинным приводом компрессора относится к энергетике и может быть применена для тепло- и электроснабжения потребителей в новых микрорайонах городов. Теплофикационная парогазовая установка, содержащая газотурбинную установку с компрессором, камерой сгорания, газовой турбиной и электрогенератором, паровой котел-утилизатор, в котором по ходу газов размещены пароперегреватель, испаритель второй ступени, камера дожигания топлива, испаритель первой ступени, экономайзер, газоводяной подогреватель сетевой воды, котел-утилизатор вырабатывает перегретый пар средних параметров, в установке применены основная и дополнительная противодавленческие паровые турбины, сетевые подогреватели первой и второй ступеней, деаэратор. В отопительных режимах ее работы за счет сжигания дополнительного топлива в камере дожигания увеличивают паропроизводительность котла-утилизатора, перегретый пар подают в дополнительную паровую турбину, отработавший в ней пар подают в сетевой подогреватель второй ступени с увеличением тепловой мощности установки. Полезную работу дополнительной паровой турбины используют для дополнительной и выработки электроэнергии. Тепловую мощность установки изменяют в соответствии с тепловой нагрузкой потребителей и температурным графиком теплосети. Достигается создание экономичной теплофикационной парогазовой установки с паровым приводом компрессора с ее хорошей адаптацией при работе в отопительные периоды года при изменяющейся тепловой нагрузке теплофикационных потребителей. 1 ил.

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают сжатый пар в первую ступень многоступенчатой опреснительной установки, при снижении давления пара в емкостях до 0,03 МПа прекращают его подачу в первую ступень опреснительной установки, отводят пар из емкостей и используют его теплоту для нагрева морской воды. Охлажденный при этом пар смешивают с паром низкого давления из последней ступени опреснительной установки и подают смесь пара в следующую паровую емкость парового компрессора, и выполняют те же процессы, что и в первой паровой емкости. Этапами работы парового компрессора управляют в соответствии с изменяющимися давлениями пара в паровых емкостях. Заявлено также устройство парового компрессора. Технический результат – повышение эффективности рабочих процессов установки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ работы газотурбинной установки на метаносодержащей парогазовой смеси включает подачу в камеру сгорания выработанного перегретого водяного пара высокого давления, подачу его большей части в камеру сгорания, смешение меньшей части перегретого пара с природным газом, подачу и получение в первом адиабатическом каталитическом реакторе метаносодержащей парогазовой смеси, ее последовательный нагрев теплотой выхлопных газов газовой турбины, а затем теплом охлаждения камеры сгорания до температуры 620-680°С, повышение концентрации водорода в метаносодердащей парогазовой смеси выше 20% во втором адиабатическом каталитическом реакторе и ее подачу в качестве топлива в камеру сгорания газотурбинной установки. Способ реализуется в устройстве, содержащем компрессор, камеру сгорания с охлаждающей рубашкой, газовую турбину, трубопровод подачи перегретого пара в камеру сгорания, приводной агрегат, котел-утилизатор, включающий испаритель, пароперегреватель, конвективный подогреватель метаносодержащей парогазовой смеси, систему охлаждения продуктов сгорания и конденсации пара низкого давления, газопровод природного газа, паропровод пара высокого давления, смеситель, два адиабатических каталитических реактора. Изобретение позволяет повысить термодинамическую и экономическую эффективность установки, упростить ее конструкцию и повысить надежность. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области энергетики, а точнее к способам подготовки воды для энергетических установок. Каталитический способ удаления кислорода из воды, согласно которому исходную воду очищают от механических примесей и подают в инжектор, где ее смешивают с газообразным водородом, получают водо-водородную смесь и производят ее обескислороживание путем взаимодействия с ионообменным материалом, содержащим палладиевый катализатор, отличающийся тем, что пузырьки газообразного водорода в водо-водородной смеси дробят и полностью растворяют в воде с помощью аппарата вихревого слоя с ферромагнитными иголками, установленными с возможностью вращения под воздействием переменного электромагнитного поля. Технический результат - повышение эффективности каталитического способа удаления кислорода из воды при ее взаимодействии с растворенным газообразным водородом на зернах высокоосновного анионита, покрытых слоем металлизированного палладия. 1 ил.

 


Наверх