Способ работы парового компрессора многоступенчатой опреснительной установки и устройство для его реализации



Владельцы патента RU 2648323:

Акционерное общество "Металлист-Самара" (RU)
федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" (RU)

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают сжатый пар в первую ступень многоступенчатой опреснительной установки, при снижении давления пара в емкостях до 0,03 МПа прекращают его подачу в первую ступень опреснительной установки, отводят пар из емкостей и используют его теплоту для нагрева морской воды. Охлажденный при этом пар смешивают с паром низкого давления из последней ступени опреснительной установки и подают смесь пара в следующую паровую емкость парового компрессора, и выполняют те же процессы, что и в первой паровой емкости. Этапами работы парового компрессора управляют в соответствии с изменяющимися давлениями пара в паровых емкостях. Заявлено также устройство парового компрессора. Технический результат – повышение эффективности рабочих процессов установки. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области опреснения морской воды.

Известен способ работы парового компрессора многоступенчатой опреснительной установки (Выпарные процессы и установки, Ф.М. Тарасов, Ленинградский технологический институт холодильной промышленности, 1962, с. 3, 19), в котором применяют механическое сжатие в компрессоре пара, вышедшего из последней ступени многоступенчатой опреснительной установки, с подачей сжатого пара в первую ступень многоступенчатой опреснительной установки. Преимущество этого способа заключается в том, что для запуска этой опреснительной установки используют сжатый пар из внешнего источника пара и при работе этой установки на стационарном режиме не требуется применение дополнительного источника сжатого пара.

Недостатками этого способа являются сложность механического сжатия пара и низкая экономичность опреснительной установки, работающей по этому способу.

Известен способ работы парового компрессора опреснительной установки, в котором производят механическое сжатием пара, а также устройства для реализации этого способа (Технологии опреснения. Морская и слабосоленая вода. http://www.wabag.com/wp-content/uploads/2013/02/WABAG_desalination_ru_2012_rev01_proof.pdf). В соответствии с этим способом в многоступенчатых опреснительных установках применяют сжатие технологического пара, вышедшего из последней ступени многоступенчатой опреснительной установки с давлением 0,16-0,2 МПа в механических компрессорах с повышением давления до 0,3-0,34 МПа. Привод механических компрессоров производят через редукторы от электродвигателей или двигателей внутреннего сгорания, потребляющих большое количество энергии.

Известна установка для опреснения морской воды MED-MVC, разработанная компанией WABAG (WABAG_desalination_ru_2) (Технологии опреснения. Морская и слабосоленая вода http://www.wabag.com/wp-content/uploads/2013/02/WABAG_desalination_ru_2012_rev01_proof.pdf). Эта многоступенчатая опреснительная установка состоит из нескольких баков (ступеней) испарителей воды и механического парового компрессора. Теплоту для подогрева и испарения исходной морской воды в этой опреснительной установке получают за счет энергии, затрачиваемой на механическое сжатие пара в паровом компрессоре. Опреснительные установки MED-MVC обычно применяют для малых и средних установок опреснения морской воды.

Преимуществом данной многоступенчатой опреснительной установки является отсутствие в ней внешнего источника для подогрева пара. Ее недостатками являются повышенный расход электроэнергии вследствие значительных потерь электроэнергии при механическом сжатии пара, конструктивная сложность и повышенная стоимость опреснительной установки.

Известен способ работы парового компрессора, производящего механическое сжатие пара в многоступенчатой опреснительной установке (Дистилляционные опреснительные установки «Каскад» http://www.salut.ru/ViewTopic.php?Id=644). Согласно способу работы парового компрессора насыщенный пар из последней ступени многоступенчатого опреснителя с давлением 0,016-0,02 МПа сжимают в механическом паровом компрессоре до давления 0,03-0,036 МПа и подают в первую ступень этого опреснителя. Привод механического парового компрессора производят от электродвигателя, питаемого электроэнергией из внешней электрической сети. Исходную морскую воду подогревают в теплообменниках за счет теплоты дистиллята опреснительной установки и рассола обработанной в этой установке морской воды. Этот способ работы парового компрессора многоступенчатой опреснительной установки с механическим сжатием в нем насыщенного пара принят в качестве прототипа изобретения.

Недостатками этого способа-прототипа являются его недостаточная экономичность и повышенная стоимость, связанные с механическим процессом сжатия пара, конструктивная сложность и повышенная стоимость устройства для реализации этого способа вследствие применения в многоступенчатой опреснительной установке высокооборотного парового компрессора, мультипликатора и электродвигателя.

Задачей предлагаемого способа работы парового компрессора многоступенчатой опреснительной установки является устранение отмеченных недостатков способа-прототипа и повышение эффективности рабочих процессов установки.

Техническим результатом, достигаемым при реализации предлагаемого способа, является повышение экономичности процесса сжатия пара с уменьшением потребления электрической энергии, а также снижение стоимости опреснительной установки с паровым компрессором, реализующей предлагаемый способ.

Поставленная задача решается за счет того, что в способе работы парового компрессора многоступенчатой опреснительной установки, согласно которому насыщенный пар с давлением 0,016-0,02 МПа подают в паровой компрессор из последней ступени многоступенчатой опреснительной установки, сжимают до давления 0,03-0,032 МПа и направляют в первую ступень этой установки, в паровом компрессоре, содержащем, по меньшей мере, две паровые емкости, открывают вход и закрывают выходы первой емкости, заполняют ее насыщенным паром из последней ступени многоступенчатой опреснительной установки, закрывают вход в первую емкость, производят термическое сжатие содержащегося в ней насыщенного пара с повышением его давления до 0,03-0,032 МПа путем его электрического нагрева за счет внешней электрической энергии, открывают выход сжатого пара из емкости и направляют его в первую ступень многоступенчатой опреснительной установки, при снижении давления пара в емкости до 0,03 МПа прекращают подачу сжатого пара в первую ступень многоступенчатой опреснительной установки, а паром, отводимым из емкости, нагревают морскую воду, при этом пар, охлажденный при нагреве морской воды, смешивают с паром низкого давления из последней ступени опреснительной установки и подают смесь пара в следующую паровую емкость, в которой последовательно выполняют те же процессы, что и в первой паровой емкости - заполняют паром низкого давления, термически сжимают пар, подают сжатый пар в первую ступень опреснительной установки, нагревают морскую воду, смешивают пар с паром низкого давления и подают в следующую паровую емкость, причем этапами работы парового компрессора управляют в соответствии с изменяющимися давлениями пара в паровых емкостях.

Устройство парового компрессора многоступенчатой опреснительной установки для реализации способа, содержащее трубопровод насыщенного пара низкого давления, вход которого связан с последней ступенью многоступенчатой опреснительной установки с давлением пара на ее выходе 0,016-0,02 МПа, трубопровод сжатого пара, выход которого связан с первой ступенью многоступенчатой опреснительной установки с давлением 0,03-0,032 МПа, также снабжено, по меньше мере, двумя паровыми емкостями с запорными органами для ввода в них пара, вывода из них пара и их опорожнения, электрическими нагревателями, манометрами, электрическими выключателями, теплообменником нагрева морской воды, струйным аппаратом смешения, состоящим из инжектора и камеры смешения, системой управления режимами работы парового компрессора, при этом электрические нагреватели связаны через выключатели с внешней электрической сетью, система управления связана импульсными линиями с запорными органами паровых емкостей, а также с выключателями, соединенными с внешней электрической сетью, причем вход каждой паровой емкости связан трубопроводом насыщенного пара с последней ступенью многоступенчатой опреснительной установки, а ее выход связан трубопроводом сжатого пара с первой ступенью многоступенчатой опреснительной установки, каждая паровая емкость связана трубопроводом опорожнения через теплообменник подогрева опресняемой морской воды со струйным аппаратом смешения, вход инжектора которого связан с трубопроводом выхода пара из теплообменника, а камера смешения связана трубопроводом насыщенного пара низкого давления с последней ступенью опреснительной установки, при этом выход струйного аппарата связан трубопроводом со следующей паровой емкостью парового компрессора.

В предлагаемом способе работы парового компрессора многоступенчатой опреснительной установки морской воды электрическую энергию, подводимую к электрическим нагревателям, установленным в первой и второй паровых емкостях, используют для нагрева и термического сжатия пара. В то время как в способе-прототипе механическое сжатие пара требует применения электродвигателя, мультипликатора и парового механического компрессора, что требует повышенного расхода электроэнергии из-за не высоких КПД высокооборотного механического парового компрессора, мультипликатора и электродвигателя. Применение парового компрессора с термическим сжатием пара в паровых емкостях способствует повышению экономичности, упрощению конструкции и уменьшению стоимости многоступенчатой опреснительной установки.

Техническая сущность предложенных в способе технических решений поясняется чертежом, где изображена схема устройства парового компрессора многоступенчатой опреснительной установки.

Устройство для реализации способа содержит: 1 - трубопровод подвода насыщенного пара из последней ступени многоступенчатой опреснительной установки, 2 - теплообменник, 3 - трубопровод морской воды, 4 - трубопровод опорожнения первой паровой емкости 8, 5 - запорный орган опорожнения первой паровой емкости 8, 6 - запорный орган входа пара в первую паровую емкость, 7 - запорный орган входа пара во вторую паровую емкость 11, 8 - первая паровая емкость, 9 - электрический нагреватель первой паровой емкости, 10 - манометр первой паровой емкости, 11 - вторая паровая емкость, 12 - электрический нагреватель второй паровой емкости, 13 - манометр второй паровой емкости, 14 - трубопровод выхода пара из первой паровой емкости, 15 - запорный орган на выходе пара из первой паровой емкости, 16 - электрическая сеть, 17 - трубопровод подачи сжатого пара в первую ступень многоступенчатой опреснительной установки, 18 - электрический выключатель первой паровой емкости, 19 - электрический выключатель второй паровой емкости, 20 - трубопровод выхода пара из второй паровой емкости, 21 - запорный орган выхода пара из второй паровой емкости, 22 - запорный орган опорожнения второй паровой емкости, 23 - трубопровод опорожнения второй паровой емкости, 24 - струйный аппарат с инжектором и смесителем, 25 - система управления.

Сущность способа и устройства для его реализации заключается в следующем.

По сигналам системы управления 25 открывают запорный орган 6, закрывают запорные органы 5 и 15 первой паровой емкости 8 многоступенчатой опреснительной установки и запорные органы 21, 22, 7 второй паровой емкости 11. По трубопроводу 1 подвода насыщенного пара низкого давления из последней ступени многоступенчатой опреснительной установки подают пар низкого давления 0,016-0,02 МПа в первую паровую емкость 8. После ее заполнения паром система управления 25 обеспечивает включение электрического выключателя 18 и электроэнергию из электрической сети 16 подводят к электрическому нагревателю 9 первой паровой емкости 8. Теплоту электрического нагревателя используют для нагрева и повышения давления пара в первой паровой емкости 8 до 0,03-0,032 МПа (на чертеже многоступенчатая опреснительная установка не показана). По сигналу манометра 10 после повышения давления пара в первой паровой емкости 8 до 0,03-0,032 МПа системой управления 25 по импульсным линиям подают управляющее воздействие на открытие выходного запорного органа 15 на выходе пара из первой паровой емкости 8. Из нее сжатый пар направляют в трубопровод 17 подачи пара к первой ступени многоступенчатой опреснительной установки. При снижении давления в первой емкости до 0,03 МПа по сигналу манометра 10 система управления производит закрытие выходного запорного органа 15 и открытие запорного органа 5 опорожнения первой паровой емкости 8. Отводимый из нее пар подают по трубопроводу 4 в теплообменник 2, теплоту этого пара используют для нагрева морской воды, подводимой в теплообменник 2 по трубопроводу 3. Пар со сниженным давлением при его охлаждении в теплообменнике 2 подают в инжектор струйного аппарата 24 и смешивают его в смесителе с паром низкого давления 0,016-0,02 МПа, подводимым в него по трубопроводу 1.

На втором этапе работы парового компрессора система управления 25 производит открытие входного запорного органа 7 и пар, вышедший из струйного аппарата 24, подают во вторую паровую емкость 11. Затем система управления 25 обеспечивает закрытие входного запорного органа 7, включает электрический выключатель 19 и электроэнергию из электрической сети 16 подают к электрическому нагревателю 12 второй паровой емкости 11. Теплоту электрического нагревателя 12 используют для повышения давления пара во второй паровой емкости 11 до давления 0,03-0,032 МПа. По сигналу манометра 13 после повышения давления пара во второй паровой емкости 11 до этого давления система управления 25 подает управляющее воздействие на открытие выходного запорного органа 21 и обеспечивает подачу сжатого пара по трубопроводу 17 в первую ступень многоступенчатой опреснительной установки. При снижении давления пара во второй паровой емкости до 0,03 МПа по сигналу манометра 13 система управления производит закрытие выходного запорного органа 21 и открытие запорного органа 22 опорожнения второй паровой емкости. Отводимый из нее пар подают по трубопроводу 23 в теплообменник 2, где его теплоту используют для нагрева морской воды, подводимой в теплообменник 2 по трубопроводу 3. Пар, охлажденный в теплообменнике 2, подают в инжектор смесительного аппарата 24 и смешивают его с паром низкого давления, подводимым в камеру смешения по трубопроводу 1 из последней ступени многоступенчатой опреснительной установки. Затем, как это описано выше, подают этот пар в первую паровую емкость 8.

1. Способ работы парового компрессора многоступенчатой опреснительной установки, согласно которому насыщенный пар с давлением 0,016-0,02 МПа подают в паровой компрессор из последней ступени многоступенчатой опреснительной установки, сжимают до давления 0,03-0,032 МПа и направляют в первую ступень этой установки, отличающийся тем, что в паровом компрессоре, содержащем, по меньшей мере, две паровые емкости, открывают вход и закрывают выходы первой емкости, заполняют ее насыщенным паром из последней ступени многоступенчатой опреснительной установки, закрывают вход в первую емкость, производят термическое сжатие содержащегося в ней насыщенного пара с повышением его давления до 0,03-0,032 МПа путем его электрического нагрева за счет внешней электрической энергии, открывают выход сжатого пара из емкости и направляют его в первую ступень многоступенчатой опреснительной установки, при снижении давления пара в емкости до 0,03 МПа прекращают подачу сжатого пара в первую ступень многоступенчатой опреснительной установки, а паром, отводимым из емкости, нагревают морскую воду, при этом пар, охлажденный при нагреве морской воды, смешивают с паром низкого давления из последней ступени опреснительной установки и подают смесь пара в следующую паровую емкость, в которой последовательно выполняют те же процессы, что и в первой паровой емкости - заполняют паром низкого давления, термически сжимают пар, подают сжатый пар в первую ступень опреснительной установки, нагревают морскую воду, смешивают пар с паром низкого давления и подают в следующую паровую емкость, причем этапами работы парового компрессора управляют в соответствии с изменяющимися давлениями пара в паровых емкостях.

2. Устройство парового компрессора многоступенчатой опреснительной установки, содержащее трубопровод насыщенного пара низкого давления, вход которого связан с последней ступенью многоступенчатой опреснительной установки с давлением пара на ее выходе 0,016-0,02 МПа, трубопровод сжатого пара, выход которого связан с первой ступенью многоступенчатой опреснительной установки с давлением 0,03-0,032 МПа, отличающееся тем, что паровой компрессор снабжен, по меньше мере, двумя паровыми емкостями с запорными органами для ввода в них пара, вывода из них пара и их опорожнения, электрическими нагревателями, манометрами, электрическими выключателями, теплообменником нагрева морской воды, струйным аппаратом смешения, состоящим из инжектора и камеры смешения, системой управления режимами работы парового компрессора, при этом электрические нагреватели связаны через выключатели с внешней электрической сетью, система управления связана импульсными линиями с запорными органами паровых емкостей, а также с выключателями, соединенными с внешней электрической сетью, причем вход каждой паровой емкости связан трубопроводом насыщенного пара с последней ступенью многоступенчатой опреснительной установки, а ее выход связан трубопроводом сжатого пара с первой ступенью многоступенчатой опреснительной установки, каждая паровая емкость связана трубопроводом опорожнения через теплообменник подогрева опресняемой морской воды со струйным аппаратом смешения, вход инжектора которого связан с трубопроводом выхода пара из теплообменника, а камера смешения связана трубопроводом насыщенного пара низкого давления с последней ступенью опреснительной установки, при этом выход струйного аппарата связан трубопроводом с следующей паровой емкостью парового компрессора.



 

Похожие патенты:

Изобретение относится к области биохимии. Предложена композиция для биологической очистки грунта, нефтешламов, жидких отходов и сточных вод от органических соединений и нефтепродуктов.

Изобретение относится к производству бумаги, а именно к применению коллоидного осажденного карбоната кальция (cPCC) для адсорбции и/или уменьшения количества, по меньшей мере, одного органического материала в водной среде, которая производится в процессах изготовления бумаги или варки целлюлозы.

Изобретение относится к устройствам для флотационной очистки промышленных и бытовых жидких сред от органических примесей. Устройство для флотационной очистки жидких сред включает входной (1) и выходной (2) трубопроводы, корпус (3), пеносборник (4), пластину (5), приспособление (6) для ввода воздуха в очищаемую жидкую среду, генератор пузырьков воздуха, состоящий из пластины (5), рассекателя потока (8) и форсунки (10).

Изобретение относится к опреснению жидкости. Вакуумная опреснительная установка для воды с генерацией электроэнергии содержит герметичную камеру с водяной ванной (1), внутри которой ниже уровня жидкости размещен испаритель (2), подключенный к солнечному коллектору (3) через насос (13), систему насосов, содержащую, по меньшей мере, три вакуумных насоса (5), соединенных системой трубопроводов с установленными на них трехходовыми клапанами (6), (7), теплообменный аппарат (4), соединенный посредством трехходового клапана (8) с трубопроводом подачи исходной жидкости и со сборником дистиллята (9), который через обратный клапан (15) соединен с одним из вакуумных насосов, рекуперативный теплообменник (10), преобразователь тока (11) и электроаккумулятор (2), соединенные с системой насосов (5), насос (14) для подачи исходной воды.

Изобретение предназначено для обработки жидкостей. Система для обработки сырьевого потока, содержащего углеводороды и жидкость на водной основе, включает сосуд, содержащий впуск для подачи сырьевого потока, соединенный по текучей среде с сырьевым потоком, и выпуск обработанного потока, соединенный по текучей среде с обработанным потоком, и фильтрационный слой, расположенный внутри сосуда, содержащий первый слой фильтрационного материала, расположенный на втором слое фильтрационного материала.

Изобретение относится к области охраны подземных и поверхностных вод от загрязняющего потока стоков животноводческих комплексов, полигонов ТБО, нефтепродуктов, прудов - накопителей и др.

Изобретение относится к области очистки отходящих газов (выхлопных, дымовых), в том числе содержащих органические компоненты типа фенола, формальдегида, дурно пахнущие вещества и т.п., и может найти применение в металлургической, химической, пищевой, нефтеперерабатывающей промышленности, а также при нанесении и сушке лакокрасочных материалов, литейном производстве, при переработке продукции сельского хозяйства.

Группа изобретений может быть использована в горной, пищевой промышленности, на водоканалах, предприятиях агропромышленного комплекса. Способ включает сбор пенного концентрата и нанесение его на подвижный носитель с последующим обезвоживанием и удалением сухого концентрата.

Изобретение относится к технологии получения дистиллированной воды и иных жидкостей. Предложен мобильный аппарат для дистилляции жидкости, содержащий компактный разборный парогенератор для испарения исходной жидкости с установленным каплеотбойником в верхней части, конденсатор паров дистиллята, рекуперативный теплообменник для передачи теплоты от удаляемого из аппарата концентрированного рассола к подаваемой в аппарат исходной жидкости, рекуперативный теплообменник для передачи теплоты от удаляемого из аппарата дистиллята к подаваемой в аппарат исходной жидкости, рекуперативный теплообменник для подогрева исходной жидкости теплом компрессора, насос, электронагреватель, замкнутый герметичный контур теплового насоса, который состоит из компрессора, нагревателя, дроссельного устройства, холодильника, соединенных системой трубопроводов.

Изобретение относится к способу получения водорода с помощью термической диссоциации воды или низкотемпературных диссоциирующих веществ, содержащих в составе водород.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии.

Группа изобретений относится к области опреснения морской воды, а именно к опреснительной установке и ее термоумягчителю. Опреснительная многоступенчатая адиабатная установка дополнительно содержит термоумягчитель (52), служащий для генерации частиц шлама в объеме нагретой в паровом подогревателе (26) питательной воды, отбираемой из трубопровода ее подачи на вход многоступенчатого адиабатного испарителя (4), и двухсекционный приемник питательной воды (76) для снижения пересыщения в упариваемой морской воде за счет использования шламовых частиц в качестве ″затравочных кристаллов″ в объеме пересыщенного раствора.

Изобретение относится к средствам опреснения соленой или морской воды путем обратного осмоса и фильтрации. .

Изобретение относится к области судостроения. .

Изобретение относится к машиностроению, в частности к опреснительным установкам, и может быть использовано для опреснения морских, соленых вод, кроме того, для переработки загрязненных сточных вод промышленных предприятий, в том числе нефтепродуктами, а также для получения подпиточной воды котлов тепловых и электрических станций.

Изобретение относится к способам опреснения морской воды. .

Изобретение относится к устройствам для опреснения морской воды. .

Изобретение относится к автономным системам водоочистки и может быть использовано на подводных и глубоководных обитаемых аппаратах (ПГА), где предъявляются повышенные требования к компактности, надежности, удобству в обслуживании и акустическим характеристикам оборудования, а также к обеспечению скрытности объекта.

Изобретение относится к исследованию накипеобразования в приближенных к производственным условиях при контролируемых значениях таких параметров как давление и концентрации солей в рабочей жидкости.

Изобретение относится к устройствам опреснения морской воды, в частности к компактным и малогабаритным судовым опреснительным установкам. .

Изобретение относится к опреснительным установкам. Подаваемая жидкость подается в камеру увлажнения второй ступени, в результате чего образуется ванна увлажнения второй ступени. Первый остаток подаваемой жидкости из камеры увлажнения второй ступени затем подается в камеру увлажнения первой ступени, в результате чего образуется ванна увлажнения первой ступени, температура которой ниже температуры ванны увлажнения второй ступени. Затем из камеры увлажнения первой ступени удаляется второй остаток подаваемой жидкости. При этом газ-носитель нагнетается в ванну увлажнения первой ступени и барботируется через нее, собирая испаряемый компонент в виде пара из первого остатка подаваемой жидкости, что обеспечивает частичное увлажнение газа-носителя. Частично увлажненный газ-носитель затем барботируется через ванну увлажнения второй ступени, где газ-носитель собирает дополнительное количество испаряемого компонента из подаваемой жидкости, в результате чего обеспечивается дополнительное увлажнение газа-носителя перед удалением из камеры увлажнения второй ступени. 2 н. 17 з.п. ф-лы, 4 ил.

Изобретение относится к области опреснения морской воды. Способ работы парового компрессора, в котором насыщенный пар с давлением 0,016-0,02 МПа последовательно термически сжимают, по меньшей мере, в двух паровых емкостях до давления 0,03-0,032 МПа путем его электрического нагрева и подают сжатый пар в первую ступень многоступенчатой опреснительной установки, при снижении давления пара в емкостях до 0,03 МПа прекращают его подачу в первую ступень опреснительной установки, отводят пар из емкостей и используют его теплоту для нагрева морской воды. Охлажденный при этом пар смешивают с паром низкого давления из последней ступени опреснительной установки и подают смесь пара в следующую паровую емкость парового компрессора, и выполняют те же процессы, что и в первой паровой емкости. Этапами работы парового компрессора управляют в соответствии с изменяющимися давлениями пара в паровых емкостях. Заявлено также устройство парового компрессора. Технический результат – повышение эффективности рабочих процессов установки. 2 н.п. ф-лы, 1 ил.

Наверх