Патенты автора Васильев Олег Валерьевич (RU)

Изобретение относится к способам обработки сигналов в метеорологических радиолокационных комплексах (МРЛК) и может быть использовано для обнаружения зон обледенения в секторах взлета и посадки летательных аппаратов (ЛА). Достигаемый технический результат – повышение эффективности обнаружения зон обледенения в секторах взлета и посадки ЛА. Способ заключается в том, что с помощью метеорологической радиолокационной станции ближней аэродромной зоны (МРЛС БАЗ), входящей в состав МРЛК и устанавливаемой непосредственно на аэродроме, в секторе взлета и посадки ЛА осуществляют сканирование атмосферы в азимутальной и угломестной плоскостях, оценивают мощность отраженного сигнала. Далее для каждого импульсного объема вычисляют отражаемость Z* атмосферы, устанавливают порог отражаемости Zпор, соответствующий метеопродукту - слабый дождь. При превышении порога фиксируются минимальная и максимальная дальности с высокой отражаемостью с соответствующими высотами H1 и Н2. Затем с помощью теплового профилемера, входящего в состав МРЛК, измеряется значение высоты нулевой изотермы НТ=0. После чего при одновременном выполнении условий Z≥Zпор, Нтек≥НT=0, H1≤Нтек≤Н2 (где Нтек - текущее значение высоты полета ЛА в секторе взлета и посадки) принимают решение о наличии зоны обледенения, в противном случае принимают решение об ее отсутствии. 2 ил.

Изобретение относится к области радиолокации и может быть использовано в импульсно-доплеровской бортовой радиолокационной станции (БРЛС) для селекции полезного сигнала, отраженного от воздушной цели-носителя станции радиотехнической разведки (РТР), и воздействия по основному лепестку диаграммы направленности антенны (ДНА) сигналоподобной помехи с модуляцией доплеровской частоты (СПМДЧ) типа DRFM (цифровая радичастотная память). Достигаемый технический результат - обеспечение селекции полезного сигнала, отраженного от воздушной цели - носителя станции РТР, и воздействие по основному лепестку ДНА СПМДЧ типа DRFM. Способ заключается в формировании первой пачки высокочастотной когерентной последовательности (ВКП) зондирующих импульсов (ЗИ), их усилении по мощности, излучении в направлении воздушной цели - носителя станции РТР совместно с СПМДЧ типа DRFM, приеме отраженных сигналов от воздушной цели - носителя станции РТР совместно с СПМДЧ типа DRFM, их усилении, преобразовании на промежуточные частоты, селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом на основе алгоритма быстрого преобразования Фурье, определении и запоминании ширины спектров отраженных сигналов от воздушной цели-носителя станции РТР и СПМДЧ типа DRFM, формировании и излучении в направлении воздушной цели – носителя станции РТР и СПМДЧ второй пачки ВКП ЗИ, приеме отраженных сигналов, их усилении, преобразовании на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму, с последующим их спектральным анализом на основе алгоритма быстрого преобразования Фурье, определении и запоминании ширины спектров отраженных сигналов от воздушной цели – носителя станции РТР и СПМДЧ типа DRFM, сравнении величин ширины спектров отраженных сигналов и принятии решения по результатам сравнения о том, что данный спектр сигнала принадлежит его отражению непосредственно от воздушной цели - носителя станции РТР И СПМДЧ типа DRFM, на основе которого формируется отсчет доплеровской частоты полезного сигнала и осуществляется его индикация, или о том, что данный спектр сигнала обусловлен воздействием СПМДЧ типа DRFM по главному лепестку ДНА и ее индикация не осуществляется. 3 ил.

Изобретение относится к области радиолокации и может быть использовано для измерения скорости полета беспилотного летательного аппарата малого класса типа мультикоптер (МК) и дальности до него в дальней и ближней зонах (ДЗ и БЗ) относительно охраняемого объекта (ОБ). Достигаемый технический результат - расширение функциональных возможностей радиолокационной системы (РЛС), объединяющей импульсно-доплеровскую (ИД) радиолокационную станцию и радиолокационную станцию с непрерывным излучением (НИ), при измерении скорости полета МК и дальности до него в ДЗ и БЗ относительно ОБ. Способ заключается в формировании высокочастотной последовательности зондирующих импульсов на несущей частоте fн(ИД), их усилении, излучении с помощью первой приемо-передающей антенны в направлении воздушной цели - мультикоптера (ВЦ-МК) при его первоначальном полете в ДЗ относительно ОБ, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, измеренная текущая дальность ДТЕК до МК сравнивается с верхней границей дальности ДБЗ ближней зоны относительно ОБ, при ДТЕК>ДБЗ на выходе РЛС формируются значения скорости полета МК и дальности до него при функционировании РЛС в ИД режиме, при ДТЕК=ДБЗ дополнительно к ИД режиму работы РЛС включается режим ее работы с НИ зондирующего сигнала, для чего формируется модулированный по периодическому закону непрерывный высокочастотный зондирующий сигнал с несущей частотой fн(НИ), осуществляется его усиление и излучение с помощью второй приемо-передающей антенны в направлении ВЦ-МК при его полете в БЗ относительно ОБ, осуществляется прием отраженных от МК сигналов, их усиление, преобразование на промежуточные частоты и выделение сигнала разностной частоты fp=(2FмΔf м ДТЕК/с)+fд(НИ), где Fм и Δf м - соответственно частота модуляции и величина девиации частоты; с - скорость света; fд(НИ)=2 V fн(НИ)/c - доплеровская частота, обусловленная скоростью V полета МК в БЗ и работе РЛС в режиме НИ зондирующих сигналов, измерение разностной частоты fp, компенсация доплеровской частоты fд(НИ) с помощью РЛС, функционирующей в ИД режиме, путем введения поправки fд(НИ)=fн(НИ)fд(ИД)/fн(ИД), где fд(ИД)=2Vfн(ИД)/с - доплеровская частота, обусловленная скоростью V полета МК в БЗ и работе РЛС в ИД режиме, преобразование скомпенсированной по доплеровской частоте разностной частоты fp(к) в дальность до МК при его полете в БЗ в соответствии с выражением ДТЕК=с fp(к) / 2FмΔf м, формирование при полете МК в БЗ относительно ОБ на выходе РЛС значений скорости полета МК при функционировании РЛС в ИД режиме и дальности до него при совместном функционировании РЛС в ИД режиме и режиме с НИ зондирующего сигнала. 3 ил.

Изобретение относится к области оптико-электронных систем (ОЭС) и может быть использовано для панорамного обзора пространства при наблюдении с высоким угловым разрешением объектов, характеризующихся значительной линейной протяженностью, типа взлетно-посадочные полосы, автомобильные трассы, участки границ и т.д. Заявленный способ панорамного обзора пространства оптико-электронной системой заключается в формировании составного поля зрения с помощью симметрично расположенных относительно центра поля зрения ОЭС трех слева и трех справа идентичных макрооптических видеокамер с многоэлементными приемниками излучения и различными увеличениями, причем, максимальное увеличение имеют видеокамеры, ориентированные на удаленные участки зоны обзора пространства, а минимальное - видеокамеры, ориентированные на центр зоны обзора пространства. При этом, используется монотонное и безразрывное изменение масштаба изображения по всему полю зрения ОЭС, которое, как для трех правых камер, так и левых камер аппроксимируется кривой третьего порядка. Устранение различий масштабов изображения на стыках смежных видеокамер осуществляется координатно зависимым цифровым масштабированием, выравнивающим увеличение изображения вдоль линии сшивки для трех видеокамер, расположенных слева и трех видеокамер, расположенных справа относительно центра поля зрения ОЭС. Технический результат - формирование панорамы с монотонным и безразрывным изменением масштаба изображения по всему полю зрения ОЭС, характеризующейся повышенным угловым разрешением на краях зоны обзора пространства и пониженным разрешением в центре зоны обзора пространства. 7 ил.

Изобретение относится к области радиолокации и может быть использовано для расширения функциональных возможностей импульсно-доплеровской бортовой радиолокационной станции (БРЛС). Достигаемый технический результат - расширение функциональных возможностей БРЛС за счет распознавания воздействия по боковым лепесткам диаграммы направленности антенны (ДНА) из вынесенной точки пространства прицельной по частоте помехи типа DRFM при обнаружении воздушной цели (ВЦ), прикрываемой самолетом-постановщиком помех, и, в случае ее воздействия, обработки полезного сигнала в БРЛС с одновременной режекцией помехи типа DRFM. Способ заключается в сканировании пространства главным лучом ДНА с компенсационным каналом по боковым лепесткам при обнаружении ВЦ с помощью импульсно-доплеровской БРЛС, установке коэффициента усиления в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала в компенсационном канале, преобразовании сигналов в основном и компенсационном каналах в соответствующие амплитудно-частотные спектры, при этом при облучении ВЦ главным лучом ДНА импульсно-доплеровской БРЛС амплитуды A1 и А2 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f1, обусловленной доплеровским смещением несущей частоты БРЛС вследствие взаимного перемещения ее носителя и облучаемой ВЦ, при облучении самолета-постановщика помехи типа DRFM - цифровая радиочастотная память, оснащенного станцией радиотехнической разведки (РТР), главным лучом ДНА импульсно-доплеровской БРЛС амплитуды А3 и А4 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f2, обусловленной доплеровским смещением несущей частоты БРЛС вследствие взаимного перемещения ее носителя и облучаемого самолета-постановщика помехи типа DRFM, при облучении ВЦ главным лучом ДНА и постановке самолетом-постановщиком помехи прицельной на ранее разведанной с помощью станции РТР частотной позиции f2 помехи типа DRFM по боковым лепесткам ДНА амплитуды A1 и А2 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f1, амплитуды Ап1 и Ап2 спектральных составляющих помехового сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f2, осуществляется анализ расположения спектральных составляющих сигнала и их амплитуд, в зависимости от его результата осуществляется обработка только полезного сигнала БРЛС или обработка полезного сигнала в БРЛС с одновременной режекцией помехи типа DRFM на частотной позиции f2. 3 ил.

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем» достоверной оценки радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при воздействии уводящих по дальности и скорости помех. Достигаемый технический результат - повышение достоверности оценок радиальных функционально-связанных дальности до ВЦ и скорости сближения носителя РЛС с нею при воздействии совместно или раздельно уводящих по скорости и дальности помех. Способ заключается в идентификации раздельного или совместного воздействия уводящих по дальности и скорости помех на основе совместного анализа модуля производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями сигнала от планера и лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки ВЦ, модуля разности между оценкой производной дальности и оценкой скорости, модуля разности между оценкой дальности и вычисленной дальностью на основе динамической модели радиальных функционально-связанных координат, формировании в результате совместного анализа на основе многомерной линейной дискретной калмановской фильтрации оценок дальности и скорости с учетом динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС и измерений дальности и скорости, когда идентифицировано отсутствие воздействия уводящих по дальности и скорости помех, либо измерения только дальности, когда идентифицировано воздействие только уводящей по скорости помехи, либо измерения только скорости, когда идентифицировано воздействие только уводящей по дальности помехи, а также вычислении оценок дальности и скорости только на основе динамической модели функционально-связанных координат без измерений дальности и скорости, когда идентифицировано одновременное воздействие уводящих по дальности и скорости помех. 1 ил.
Изобретение относится к области авиастроения, в частности к элементам конструкции многофункциональных истребителей, использующим средства снижения радиолокационной заметности. Достигаемый технический результат - уменьшение эффективной площади рассеяния фонаря кабины пилота многофункционального истребителя. Фонарь многофункционального истребителя представляет собой остекление из органического стекла, внутренняя часть которого имеет радиоотражающее покрытие из металлизированного слоя пленки золота с объемной концентрацией золота, превышающей порог протекания и нанесенной в вакуумной камере методом реактивного магнетронного распыления на постоянном токе в смеси рабочих газов - аргона и кислорода высокой чистоты, с нанесенным на него методом центрифугирования в регулируемом тепловом режиме защитным полимерным слоем.

Заявленная группа изобретений относится к химическому машиностроению и предназначена для производства армированных оболочек вращения из полимерных материалов с различным положением бортов. Техническим результатом заявленной группы изобретений является улучшение качества оболочек вращения, повышение технологичности их изготовления и повышение универсальности приспособления, т.е. возможности изготовления в заявленном приспособлении оболочек вращения с различным положением бортов. Технический результат достигается за счет последовательного формования бортов и центральной части заготовки в заявленном приспособлении наружной полуформой, внутренней полуформой и наконечником дорна, имеющими возможность взаимного перемещения. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационной станции (РЛС) для сопровождения групповой воздушной цели из класса «самолеты с турбореактивными двигателями» при воздействии уводящих по скорости помех. Достигаемый технический результат - повышение достоверности оценок доплеровских частот (ДЧ), обусловленных скоростью сближения носителя РЛС с каждым самолетом группы при воздействии уводящих по скорости помех. Способ заключается в параллельном сопровождении на основе калмановской фильтрации отсчетов ДЧ, обусловленных отражениями сигнала от планеров самолетов группы и центроида отсчетов ДЧ, обусловленных отражениями сигнала от лопаток рабочего колеса компрессора низкого давления двигателей самолетов; идентификации воздействия или отсутствия уводящих по скорости помех на основе вычисления модулей производных оценок разностей между оценками ДЧ, обусловленными отражениями сигнала от планера каждого самолета группы и центроидом ДЧ, обусловленных отражениями сигнала от лопаток рабочего колеса первых ступеней компрессора низкого давления двигателей самолетов группы; сравнении модулей производных оценок разностей ДЧ с порогом; при их непревышении установленного порога, что соответствует отсутствию воздействия уводящих по скорости помех, на выходе формируются оценки ДЧ, вычисляемые в соответствии с процедурой калмановской фильтрации на основе наблюдения, в противном случае принимается решение о воздействии уводящих по скорости помех и на выходе наряду с оценками ДЧ, которые не идентифицированы как уводящие по скорости помехи, формируются оценки ДЧ, вычисляемые на основе модели взаимного перемещения носителя РЛС и того самолета группы, отраженный от которого сигнал изначально еще не был идентифицирован как уводящая по скорости помеха. 2 ил.

Изобретение относится к способам и устройствам обработки радиолокационных (РЛ) сигналов в радиолокационных станциях (РЛС) и может быть использовано для измерения скорости полета воздушного объекта (ВО). Достигаемый технический результат – расширение функциональных возможностей. Способ заключается в параллельном приеме и обработке отраженных от ВО сигналов в трех приемных каналах - суммарном, вертикальном разностном и горизонтальном разностном, в каждом из которых РЛ сигнал усиливают, когерентно детектируют, стробируют по дальности и выделяют один дальностный канал с одинаковым номером дальностного канала во всех трех приемных каналах, в каждом из приемных каналов вычисляется спектр сигнала для выделенного канала дальности, осуществляется выбор вертикального или горизонтального разностного канала приема РЛ сигнала в качестве измерительного на основе измерения средних значений амплитуд спектра сигнала на их выходах, вычисление разности этих амплитуд и вращения антенны вокруг оси излучения с излучением зондирующего РЛ сигнала до тех пор, пока разность средних значений амплитуд спектров сигнала не достигнет максимального значения, моноимпульсным методом рассчитывают значение угла прихода сигнала в плоскости, соответствующей выбранному разностному каналу, по каждому спектральному отсчету с выхода выбранного разностного канала и суммарного канала методом линейного регрессионного анализа рассчитывают значения радиальной и тангенциальной составляющих скорости полета ВО в плоскости, соответствующей выбранному разностному каналу. РЛС для реализации способа содержит передатчик, три приемных канала - суммарный и два разностных канала в горизонтальной и вертикальной плоскости, каждый из которых содержит усилитель, когерентный детектор, устройство стробирования по дальности, аналого-цифровой преобразователь, вычислитель спектра сигнала, моноимпульсную антенно-фидерную систему, циркулятор, два измерителя средних значений амплитуд спектра сигнала, блок вычитания, анализатор разности амплитуд, коммутатор, вычислитель и блок управления антенной, определенным образом соединенные между собой. 2 н.п. ф-лы, 1 ил.

Изобретение представляет собой способ и устройство для радиолокационного измерения полного вектора скорости движения метеорологического объекта на основе измерения составляющих этого вектора скорости в ограниченной области пространства, определяемой шириной диаграмм направленности антенны, за короткое время без сканирования. Достигаемый технический результат - повышение точности измерений. Указанный результат достигается за счет того, что способ основан на пространственно-временной обработке отраженных от метеорологического объекта сигналов в активном когерентном радаре с моноимпульсной в двух плоскостях приемной антенной, при этом измеряют угловое положение областей метеорологического объекта, разделенных по признаку равной доплеровской частоты, определяют радиальную и две ортогональные к ней составляющие полного вектора скорости метеорологического объекта, при этом используется система вращения диаграмм направленности антенны вокруг оси излучения зондирующего сигнала по критерию максимизации интенсивности сигнала в одном из приемных каналов. 2 н.п. ф-лы, 9 ил.

Изобретение относится к способам обработки сигналов в радиолокационных станциях. Достигаемый технический результат - однозначное измерение дальности до метеорологического объекта (МО). Способ заключается в излучении первой последовательности импульсов с частотой повторения Fи1, в которой период повторения Tи1 в несколько раз меньше базового периода Т0, выбираемого из условия однозначного измерения расстояний в пределах всего возможного диапазона дальностей до наблюдаемых МО, излучении в последующий интервал Т0 второй последовательности импульсов с частотой повторения Fи2, причем Fи1=z1F0 и Fи2=z2F0, где F0=1/Т0; величины z1 и z2 некратные друг другу и не имеют общего делителя, определении совокупности наблюдаемых задержек tдн1i, где ; I - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого k-го, ; K - количество излученных импульсов в первой пачке, излученного импульса в их первой пачке, вычислении величины средней наблюдаемой задержки t1 ср отраженных импульсов от МО относительно каждого излученного k-го импульса в их первой пачке, определении совокупности наблюдаемых задержек tдн2j, где ; J - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого p-го, ; P - количество излученных импульсов во второй пачке, излученного импульса в их второй пачке, вычислении величины средней наблюдаемой задержки отраженных импульсов от МО t2 ср относительно каждого излученного p-го импульса в их второй пачке, сравнении временных задержек tдц1=mTи1+t1 cp и tдц2=nТи2+t2 ср, где m и n - количество целых периодов Ти1 и Ти2, попадающих в пределы интервала истинной задержки tдц, варьировании численных значений m и n до тех пор, пока не будет выполнено условие tдц1=tдц2 с фиксацией, при которых будет выполнено данное условие, и вычислении дальности до МО по формуле Дц=c(mфТи1+t1 ср)/2 или Дц=с(nфТи2+t2 ср)/2, где c - скорость света. 2 ил.

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано для сопровождения и распознавания типа воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем (ТРД)»

Изобретение относится к оборудованию и технологии изготовления резинотехнических изделий, в частности к устройству изготовления армированных, обрезиненных патрубков высокого давления различных диаметров в сборе с фланцами, и может быть использовано для изготовления трубопроводов различного назначения, работающих под высоким давлением

Изобретение относится к области обработки радиолокационных сигналов и может быть использовано для сопровождения разрешаемых по доплеровской частоте элементов групповой воздушной цели (ГВЦ) и распознавания количества целей в группе, а также варианта динамики их полета

 


Наверх