Патенты автора Грязин Дмитрий Геннадиевич (RU)

Группа изобретений относится к области измерительной техники. Исследуемый магнитный компас (МК) устанавливают на стенд, способный воспроизводить колебания по углам рыскания в спектре частот, соответствующем условиям эксплуатации МК и в условиях магнитного поля с заданными параметрами. Осуществляют запись сигнала МК, поступающего с выхода прибора управления, оснащённого системой коррекции. Сигнал представляет собой совокупность постоянного сигнала магнитного курса и переменного значения рыскания, в котором присутствует динамическая погрешность. Осуществляют запись сигнала с датчика угла разворота стенда. По записанным реализациям строят графики спектральной плотности. По разности значений графиков определяют спектральную плотность динамической погрешности МК на качке, а затем значения её дисперсии и среднеквадратическое отклонение (СКО). Технический результат – повышение достоверности определения динамической погрешности МК в конкретных условиях его эксплуатации. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к области измерительной техники и может быть использовано для определения значения динамической погрешности магнитного компаса (МК). Способ определения динамической погрешности магнитного компаса, вызванной качкой, заключается в том, что качка воспроизводится в заданном спектре частот, при этом на котелок компаса дополнительно воздействует магнитное поле с задаваемыми вектором и напряженностью, наиболее приближенными к условиям эксплуатации, для определения динамической погрешности задается одноосная качка карданова подвеса с котелком магнитного компаса, а значение динамической погрешности определяется расчетом значения среднеквадратического отклонения переменной составляющей отклонений магнитного курса от первоначально заданного положения. Технический результат – определение значения среднеквадратического отклонения (СКО) динамической погрешности измерения магнитного курса с помощью МК, работающего в условиях одноосной качки при воздействии магнитного поля с заданными параметрами. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано в высокоширотных магнитных компасах, имеющих погрешность на качке от воздействия на магниточувствительный элемент (МЧЭ) компаса вертикальной составляющей магнитного поля Земли, оборудованных устройствами дистанционной передачи информации о курсе. Способ заключается в том, что вырабатывают сигнал, состоящий из магнитного курса Км, угла рыскания γp и систематической погрешности δp от проекции вертикальной составляющей земного магнетизма, затем с помощью датчика угловой скорости (ДУС) с вертикальной осью чувствительности, установленного на котелке компаса, вырабатывают сигнал, пропорциональный угловой скорости изменения магнитного курса и рыскания с погрешностью и коэффициентом передачи КДУС. Сигнал ДУС интегрируется и вычитается из сигнала датчика магнитного курса (ДМК) с целью выработки сигнала погрешности δp от влияния проекции вертикальной составляющей земного магнетизма на качке. При этом в результатах обработки присутствует постоянная составляющая от погрешности ΔДУС (проинтегрированный дрейф), которая фильтруется фильтром высоких частот с постоянной времени T2 больше периода качки, после чего из сигнала ДМК вычитается сигнал, пропорциональный вертикальной составляющей земного магнетизма δp. Устройство реализует предложенный способ и состоит из датчика магнитного курса ДМК, включающего картушку с МЧЭ и преобразователь курсовой для выработки электрического сигнала о курсе, расположенные в котелке, на котором установлен ДУС. ДМК закреплен в кардановом подвесе, кроме того, устройство имеет выносной индикатор с вычислительным устройством. Технический результат - уменьшение погрешности магнитного компаса на качке, величина которой является значительной в высоких широтах. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники. Способ определения дисперсии погрешности измерения двухмерного спектра волнения инерциальным измерительным модулем волномерного буя, заключается в том, что определение погрешности производится путем сравнения характеристик, задаваемых стендом, с характеристиками, воспроизводимыми инерциальным модулем. При этом стендом одновременно воспроизводятся как вертикальные, так и угловые колебания в двух ортогональных плоскостях в заданном спектре частот, наиболее приближенном к реальным условиям эксплуатации, с дальнейшей обработкой данных от стенда и исследуемого инерциального модуля для входного (по данным от стенда) SВХ(ω, α) и выходного (по данным от инерциального модуля) SBЫX(ω, α) двухмерных спектров, разность между которыми будет определять двухмерный спектр погрешности измерения SПОГР(ω, α)=SВЫХ(ω, α)-SВX(ω, α) и дисперсию погрешности измерения как площадь под графиком рассчитанного спектра . Технический результат - определение дисперсии погрешности измерения, возможность калибровки буев, повышение достоверности измерений. 1 ил.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства. Датчик угла выполнен в виде многозначных голографических мер угла, формирующих каждая под воздействием внешнего оптического излучения стабильный плоский веер дифрагированных лучей с известными углами между лучами. Отсчетное устройство выполнено на основе ПЗС-линеек, снабжено шкалой времени и подключено к внешнему компьютеру. Технический результат заключается в повышении точности измерений. 3 табл., 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения спектральных и статистических характеристик трехмерного морского волнения. Волномерный буй содержит корпус, обеспечивающий необходимую плавучесть, герметичный отсек, в нижней части которого размещен блок аккумуляторных батарей. Блок аккумуляторных батарей соединен с инерциальным измерительным модулем, процессорным модулем и антенной, размещенной на крышке герметичного отсека. Инерциальный измерительный модуль соединен с процессорным модулем, который в свою очередь соединен с антенной. В инерциальном измерительном модуле размещены три микромеханических кремниевых вибрационных гироскопа, три микромеханических кремниевых акселерометра и трехкомпонентный магнитометр. Оси чувствительности датчиков направлены ортогонально. Достигаемый технический результат - повышение надежности волномерного буя, повышение его автономности, расширение диапазона измеряемых длин волн, уменьшение массогабаритных характеристик буя, повышения его вибро- и ударостойкости. 1 ил.

Изобретение относится к области восполняемых источников энергии и может быть использовано для волноизмерительных и навигационных буев. Установка для восполнения энергии морских буев содержит плавучий корпус, в котором расположена опора в виде рамы 1 с направляющими 2, по которым передвигается инерционное тело 3, имеющее упругую подвеску. Подвеска снабжена установленными в верхней части рамы 1 двумя блоками 4. В нижней части рамы 1 установлена система воздушного демпфирования, имеющая корпус 10, поршень 11 и выходное отверстие 12 с изменяемым диаметром. Один из блоков 4 соединен с генератором 13. Аккумулятор 16 соединен с генератором 13 через трансформатор 14 с изменяющимся коэффициентом трансформации и диодный выпрямитель 15. Вычислитель 17 соединен с выходом генератора 13 и аккумулятором 16. Шаговый двигатель 18 соединен с вычислителем 17 и устройством изменения диаметра отверстия системы воздушного демпфирования 19. Изобретение направлено на повышение КПД установки, повышение надежности и увеличение ресурса работы установки за счет снижения износа механических деталей и исключения перезаряда аккумулятора. 1 ил.

Предложенное изобретение используется для оценки динамических погрешностей микромеханических и других малогабаритных инерциальных систем. Заявленный стенд предназначен для выработки угловых колебаний в двух плоскостях, изменяющихся по гармоническому закону в расширенном частотном диапазоне, содержащий раскачивающуюся в двух плоскостях платформу, установленную на крестообразном подвесе, два двигателя с редукторами, кривошипно-кулисные механизмы, преобразующие вращательное движение двигателей в колебания платформы, и трехстепенной подшипник качения. Указанный стенд дополнительно содержит систему управления движением платформы стенда, состоящую из цифровых преобразователей угловых перемещений по каждой оси, соединенных с блоком управления, соединенным с двигателями, управляющим компьютером с установленным на нем программным обеспечением и преобразователями угловых перемещений валов двигателей, реализующим управление путем генерации напряжений якорей двигателей, пропорциональных заданным частотам колебаний, формируемых пропорционально-интегральными регуляторами, использующими в качестве сигналов обратных связей значения угловых положений каждой из осей. Технический результат: возможность задания, воспроизведения и синхронизации угловых колебаний раскачивающейся платформы в двух ортогональных плоскостях, изменяющихся по гармоническому закону в расширенном частотном диапазоне. 1 ил.

Изобретение относится к метрологии. Способ определения динамических погрешностей микромеханических инерциальных датчиков заключается в том, что определение динамической погрешности производится путем сравнения характеристик, задаваемых стендом колебаний, с характеристиками, воспроизводимыми микромеханическим датчиком или модулем. При этом колебания воспроизводятся стендом и регистрируются микромеханическим датчиком или инерциальным измерительным модулем в спектре частот, охватывающем весь частотный диапазон работы объекта и соответствующем конкретным условиям эксплуатации, с последующей обработкой по формуле S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , где S в ы х ( ω ) - спектральная плотность мощности сигнала микромеханического датчика или модуля, S в х ( ω ) - спектральная плотность мощности входного сигнала со стенда, | W ( j ω ) | - амплитудно-частотная характеристика исследуемого датчика или модуля. Расчет спектральных плотностей мощности входного и выходного сигналов осуществляется путем перехода из временной области в частотную с помощью преобразования Фурье, при этом экспериментально определенная амплитудно-частотная характеристика | W ( j ω ) | датчика или модуля характеризует дисперсию D погрешности исследуемого объекта в заданном спектре частот, а среднеквадратичное отклонение динамической погрешности микромеханического датчика находится в соответствии с выражением σ = D . Технический результат - повышение точности.

Изобретение относится к измерительной технике и может быть использовано для определения динамических характеристик датчиков угловой скорости в условиях воздействия на них статических ускорений. Способ основан на использовании двойной центрифуги с независимыми приводами двух платформ - ротора и установленного на нем поворотного стола. Исследуемый датчик угловой скорости устанавливается на поворотный стол таким образом, что ось вращения малого стола совпадает с осью чувствительности датчика угловой скорости. При задании скорости вращения ротора для обеспечения воздействия статического ускорения и скорости вращения поворотного стола, изменяющейся по гармоническому закону, в направлении, противоположном направлению вращения ротора центрифуги, на исследуемый датчик угловых скоростей будет поступать модулированный сигнал угловой скорости заданной частоты. Определение амплитудно-частотных и фазочастотных характеристик датчика производится путем последовательного изменения частоты задаваемой гармонической угловой скорости, а также сравнения сигналов на входе и выходе исследуемого датчика. Технический результат заключается в возможности оценки динамических характеристик датчиков угловой скорости при воздействии на них статических ускорений.

Изобретение относится к области приборостроения и может быть использовано для оценки динамических погрешностей малогабаритных инерциальных систем при необходимости их использования в навигационных приборах и других приборах управления

Изобретение относится к области приборостроения, в частности для оценки амплитудно-частотных и фазово-частотных характеристик датчиков угловых скоростей при необходимости их использования в навигационных приборах и других приборах управления

Изобретение относится к гидрометеорологии, а более конкретно для измерения гидрометеорологических параметров посредством средств регистрации, размещенных на буях

 


Наверх