Патенты автора Тотурбиев Адильбий Батырбиевич (RU)

Изобретение относится к промышленности огнеупорных материалов и может быть использовано при изготовлении изделий из динасового жаростойкого бетона. Технический результат - повышение термической стойкости и водостойкости изделий из динасового жаростойкого бетона. Состав для изготовления динасового жаростойкого бетона, включающий: связующее, динасовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидные нанодисперсные полисиликаты натрия с силикатным модулем 6.5 и тонкомолотых наполнителей - цирконовый концентрат и природный аморфный тонкодисперсный кремнезем при следующем соотношении компонентов, мас.%: динасовый заполнитель фракции 0,15-7 мм 54-80, тонкомолотый динас с Sуд=2500-3000 см2/г 4-12, тонкомолотый цирконовый концентрат с Sуд=2500-3000 см2/г 7-16, природный аморфный тонкодисперсный кремнезем 4-8, коллоидный нанодисперсный полисиликат натрия 5-14, вода из расчета В/Т 0.12-0.14 от массы сухих компонентов. Способ изготовления динасового жаростойкого бетона из указанного выше состава заключается в том, что предварительно изготавливают коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6.5 путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1.5, перемешивают при 95°С в течение 1.5 ч с выдержкой при этой температуре 0.5 ч, затем при одновременном перемешивании в высокоскоростном смесителе вводят тонкомолотые наполнители: динас, цирконовый концентрат с удельной поверхностью 2500-3000 см2/г, природный аморфный тонкодисперсный кремнезем и воду из расчета В/Т 0.12-0.14 (от массы сухих компонентов в зависимости от состава смеси) до получения однородной суспензии, которую перемешивают с огнеупорным динасовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, далее эту массу формуют путем прессования при удельном давлении 40 МПа, твердение которой осуществляется в процессе сушки по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 90±5°С - 0,5 ч, затем подъем температуры до 200°С - 1 ч, выдержка 2 ч. 2 н.п. ф-лы, 2 табл.

Изобретение относится к промышленности огнеупорных материалов, а именно жаростойким бетонам, и может быть использовано при изготовлении изделий из кварцитового жаростойкого бетона. Технический результат - повышение температуры начала деформации под нагрузкой 0.2 МПа °C, термической стойкости и водостойкости изделий из кварцитового жаростойкого бетона. Состав для изготовления кварцитового жаростойкого бетона, включающий: связующее, кварцитовый заполнитель и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3 ч с последующей выдержкой 0,5 ч, и в качестве наполнителя - природный тонкодисперсный аморфный кремнезем следующего химсостава, мас.%: SiO2 - 87,00; Al2O3 - 5,00; TiO3 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %: кварцитовый заполнитель 80-90, коллоидный полисиликат натрия 5-7, природный тонкодисперсный аморфный кремнезем 3-15, вода из расчета В/Т 0,12-0,14. Способ изготовления кварцитового жаростойкого бетона из указанного выше состава, включающий введение в коллоидный полисиликат натрия аморфного кремнезема и добавление воды, перемешивание в высокоскоростном смесителе с получением однородной суспензии, с последующим ее перемешиванием с кварцитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование ее путем послойной трамбовки, твердение по режиму - подъем температуры до 200°С - 1 ч, выдержка 2 часа. 2 н.п. ф-лы, 2 табл.

Изобретение относится к промышленности огнеупорных материалов, а именно жаростойким бетонам, и может быть использовано при изготовлении изделий из шамотного жаростойкого бетона. Технический результат - повышение температуры начала деформации под нагрузкой 0,2 МПа, термической стойкости и водостойкости изделий из шамотного жаростойкого бетона. Состав для изготовления шамотного жаростойкого бетона, включающий: связующее, шамотный заполнитель, тонкомолотые наполнители с удельной поверхностью 2500-3000 см2/г и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве наполнителя - природный аморфный тонкодисперсный кремнезем следующего химического состава, мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 - 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %: шамотный заполнитель фракции 0,15-7 мм 60-90, тонкомолотый шамот Sуд=2500-3000 см2/г 5-16, природный аморфный тонкодисперсный кремнезем 2-16, коллоидный нанодисперсный полисиликат натрия 3-8, вода из расчета В/Т 0,12-0,14. Способ изготовления шамотного жаростойкого бетона из указанного выше состава включает введение в коллоидный полисиликат натрия аморфного кремнезема и тонкомолотого шамота и добавление воды, перемешивание в высокоскоростном смесителе с получением однородной суспензии, с последующим ее перемешиванием с шамотным заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование ее путем прессования при удельном давлении 40 МПа, твердение по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 85-95°С - 0,5 ч, затем подъем температуры до 200°С - 1 ч, выдержка 2 ч. 2 н.п. ф-лы, 2 табл.

Изобретение относится к жаростойким бетонам. Состав для изготовления корундового жаростойкого бетона, включающий: связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит и нагретую воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и дополнительно - природный аморфный тонкодисперсный кремнезем с содержанием 20% нанодисперсных частиц, имеющий следующий химический состав, мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 - 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %: указанный коллоидный полисиликат натрия 2-4, электроплавленный корундовый заполнитель 60-80, тонкомолотый электроплавленный корунд с удельной поверхностью 2500-3000 см2/г 8-16, тонкомолотый технический глинозем с удельной поверхностью 2500-3000 см2/г 4-6, тонкомолотый диатомит с удельной поверхностью 2500-3000 см2/г 3-5, указанный тонкодисперсный кремнезем 3-9, нагретая до 90°С вода из расчета В/Т 0,12-0,14. Способ изготовления корундового жаростойкого бетона из указанного выше состава, включающий введение при перемешивании в высокоскоростном смесителе в указанный коллоидный полисиликат натрия тонкомолотых указанных электроплавленного корунда, технического глинозема, диатомита, указанного кремнезема и воды, нагретой до 80-90°С, до получения однородной суспензии, перемешивание полученной суспензии с указанным корундовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование этой массы прессованием при удельном давлении 30 МПа и осуществление твердения в процессе сушки по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 85-95°С - 0,5 ч, подъем температуры до 200°С - 1 ч, выдержка 2 ч. Технический результат – повышение термических свойств и водостойкости бетона. 2 н.п. ф-лы, 2 табл.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления хромомагнезитового жаростойкого бетона, включающий связующее, хромомагнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивании при 100°C в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве тонкомолотого наполнителя – тонкомолотый хромомагнезит и тонкомолотый лом периклазохромитовых изделий при следующем соотношении компонентов, мас.%: хромомагнезитовый заполнитель фракции 0,18-7 мм 60-80, тонкомолотый хромомагнезит Sуд=2500-3000 см2/г 8-16, коллоидный нанодисперсный полисиликат натрия 5-12.5, тонкомолотый лом периклазохромитовых изделий Sуд=2500-3000 см2/г 7-11.5, вода из расчета В/Т 0.12-0.14. Способ изготовления хромомагнезитового жаростойкого бетона из указанного выше состава, заключающийся в том, что в предварительно изготовленный коллоидный полисиликат натрия при одновременном перемешивании в высокоскоростном смесителе вводят указанные тонкомолотые наполнители и воду с получением однородной суспензии, которую перемешивают с хромомагнезитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, далее эту массу формуют путем послойной трамбовки и твердение массы осуществляется в процессе сушки по режиму: подъем температуры до 200°C в течение 1 ч, выдержка при этой температуре 2 ч до полного удаления воды. Технический результат - повышение термо- и водостойкости. 2 н.п. ф–лы, 2 табл.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления магнезитового жаростойкого бетона, включающий: связующее, магнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидные нанодисперсные полисиликаты натрия и тонкомолотые наполнители - лом периклазохромитовых изделий, шлам электрокорунда при следующем соотношении компонентов, мас. %: магнезитовый заполнитель 60-80, тонкомолотый магнезит 8-16, коллоидный нанодисперсный полисиликат натрия 5-12,5, тонкомолотый лом периклазохромитовых изделий 4-6,5, тонкомолотый шлам электрокорунда 3-5, вода - из расчета В/Т=0,12-0,14. Способ изготовления магнезитового жаростойкого бетона из указанного выше состава, заключающийся в том, что предварительно изготавливают коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6.5 путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1.6, перемешивают при 100°С в течение 3.0 ч с выдержкой не более 0.5 ч, при одновременном перемешивании в высокоскоростном смесителе вводят тонкомолотые наполнители: магнезит с удельной поверхностью 2500-3000 см2/г, лом периклазохромитовых изделий фр. менее 0.15, шлам электрокорунда фр. менее 0.15 и воду из расчета В/В=0.12-0.14 (в зависимости от состава смеси) до получения однородной суспензии и полученную смесь перемешивают с огнеупорным магнезитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы. Технический результат – повышение температуры начала деформации под нагрузкой 0,2 МПа, термической стойкости и водостойкости. 2 н.п. ф-лы, 2 табл.
Изобретение относится к промышленности строительных материалов и может быть использовано для производства безобжиговых теплоизоляционных материалов, применяемых для изоляции зданий, сооружений и трубопроводов. Технический результат - повышение прочности на сжатие и снижение плотности теплоизоляционного материала. Композиция для получения теплоизоляционного материала, включающая связующее, кремнеземсодержащий наполнитель и борную кислоту, содержит в качестве связующего водный раствор полисиликата натрия с силикатным модулем 4,2, полученный путем введения в 30%-ный водный раствор силиката натрия 10%-ного гидрозоля диоксида кремния при их соотношении 1:1, перемешивания при 100°C в течение 3,0 ч с последующей выдержкой при этой температуре 0,4 ч, и указанного наполнителя - тонкомолотый диатомит при следующем соотношении компонентов, мас.%: водный раствор полисиликата натрия 92,0-95,5, диатомит 1,5-3,0, борная кислота 3-6. 1 табл.
Изобретение относится к сырьевым смесям для получения теплоизоляционного материала, применяемого для устройства теплоизоляционных покрытий трубопроводов с теплоносителями на атомных и тепловых электростанциях. Технический результат - снижение плотности и коэффициента теплопроводности. Композиция для получения теплоизоляционного материала, включающая связующее, кремнеземсодержащий наполнитель, кремнефтористый натрий и полиэтилорганосиликон, содержит в качестве связующего водный раствор полисиликата натрия с силикатным модулем 4,2, полученный путем введения в 30%-ный водный раствор силиката натрия 10%-ного гидрозоля диоксида кремния при их соотношении 1:1, перемешивания при 100°C в течение 3,0 ч с последующей выдержкой при этой температуре 0,4 ч, и указанного наполнителя - молотую опоку при следующем соотношении компонентов, масс.ч: водный раствор полисиликата натрия 100, молотая опока 0.01-45, кремнефтористый натрий 10-40, полиэтилорганосиликон 5-25. 1 пр., 1 табл.
Изобретение относится к огнеупорной промышленности. Оно может быть использовано для выполнения защитных обмазок, а также монолитных футеровок высокотемпературных тепловых агрегатов. Технический результат изобретения - повышение термостойкости и механических свойств. Огнеупорная масса для футеровки тепловых агрегатов включает электрокорунд, высокоглиноземистый цемент, цирконовый концентрат, водный раствор полисиликата натрия с силикатным модулем 6,5 при следующем соотношении компонентов, масс.%: Электрокорунд 65-87.5 Цемент высокоглиноземистый 5-10 Цирконовый концентрат 5-20 Водный раствор полисиликата натрия 2.5-5
Изобретение относится к промышленности строительных материалов и может быть использовано при приготовлении жаростойкого бетона для изготовления футеровки обжиговых колодцев и печей трубопрокатных станов металлургической промышленности
Изобретение относится к строительным материалам, в частности к теплоизоляционным бетонам ячеистой структуры, и может быть использовано для тепловой изоляции ограждающих конструкций зданий и сооружений

Изобретение относится к промышленности строительных материалов и может быть использовано для футеровки тепловых агрегатов металлургической промышленности

 


Наверх