Состав и способ изготовления хромомагнезитового жаростойкого бетона



Состав и способ изготовления хромомагнезитового жаростойкого бетона
Состав и способ изготовления хромомагнезитового жаростойкого бетона

Владельцы патента RU 2662820:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОЛОГИИ ДАГЕСТАНСКОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК (RU)

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления хромомагнезитового жаростойкого бетона, включающий связующее, хромомагнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивании при 100°C в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве тонкомолотого наполнителя – тонкомолотый хромомагнезит и тонкомолотый лом периклазохромитовых изделий при следующем соотношении компонентов, мас.%: хромомагнезитовый заполнитель фракции 0,18-7 мм 60-80, тонкомолотый хромомагнезит Sуд=2500-3000 см2/г 8-16, коллоидный нанодисперсный полисиликат натрия 5-12.5, тонкомолотый лом периклазохромитовых изделий Sуд=2500-3000 см2/г 7-11.5, вода из расчета В/Т 0.12-0.14. Способ изготовления хромомагнезитового жаростойкого бетона из указанного выше состава, заключающийся в том, что в предварительно изготовленный коллоидный полисиликат натрия при одновременном перемешивании в высокоскоростном смесителе вводят указанные тонкомолотые наполнители и воду с получением однородной суспензии, которую перемешивают с хромомагнезитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, далее эту массу формуют путем послойной трамбовки и твердение массы осуществляется в процессе сушки по режиму: подъем температуры до 200°C в течение 1 ч, выдержка при этой температуре 2 ч до полного удаления воды. Технический результат - повышение термо- и водостойкости. 2 н.п. ф–лы, 2 табл.

 

Изобретение относится к промышленности строительных материалов, а именно жаростойким бетонам, и может быть использовано при изготовлении изделий из хромомагнезитового жаростойкого бетона. Технический результат - повышение температуры начала деформации под нагрузкой 0.2 МПа, °C термической стойкости и водостойкости изделий из хромомагнезитового жаростойкого бетона.

Известен способ изготовления жаростойких бетонов на основе силикат-натриевых композиций (1).

Недостатком известного способа является использование в качестве связующего силикат-глыбу (силикат натрия), которая содержит легкоплавкий щелочной компонент Na2O, снижающий температуры начала деформации под нагрузкой 0.2 МПа, термическую стойкость и водостойкость жаростойкого бетона.

Наиболее близкими к заявляемому техническому решению по совокупности признаков, т.е. прототипом, является состав и способ для изготовления безобжигового хромомагнезитового жаростойкого бетона, включающего, мас.%: хромомагнезитовый заполнитель 65-87, тонкомолотый хромомагнезит 6-16, силикат-глыба с силикатным модулем 2,7-3 в виде наноразмерных частиц 2-4, тонкомолотый магниевый концентрат 5-15, вода из расчета В/Т 0,12-0,14 (2) с основными показателями: температуры начала деформации под нагрузкой 0.2 МПа (1500°C); термическая стойкость 17-22 теплосмен (1300°C - вода), водостойкость - коэффициент размягчения 0,4-0,6.

Недостатком этого состава и способа также является то, что связующее (силикат-глыба) содержит большое количество легкоплавкого щелочного компонента Na2O, которое приводит к снижению температуры начала деформации под нагрузкой 0.2 МПа, термической стойкости и водостойкости бетона, кроме того, такой способ перевода натриевой силикат-глыбы в наноразмерные частицы путем дегидратационного диспергирования гидратированной тонкомолотой до удельной поверхности 2500-3000 см2/г натриевой силикат-глыбы при температуре 200-600°C является сложным и требует больших энергетических затрат.

Целью изобретения является устранение вышеуказанных недостатков хромомагнезитового жаростойкого бетона.

Поставленная цель достигается тем, что состав для изготовления хромомагнезитового жаростойкого бетона, включающий хромомагнезитовый заполнитель, тонкомолотый хромомагнезит, связующее (натриевый силикат глыба) в виде наноразмерных частиц, тонкомолотый магниевый концентрат, воду, отличается тем, что он в качестве связующего содержит коллоидный полисиликат натрия с силикатным модулем 6.5, а взамен тонкомолотого наполнителя магниевого концентрата вводятся тонкомолотый лом периклазохромитовых изделий, при следующем соотношении компонентов, мас.%:

Хромоагнезитовый заполнитель фракции 0,18-7 мм 60-80
Тонкомолотый хромомагнезит Sуд=2500-3000 см2 8-16
Коллоидный полисиликат натрия с силикатным модулем 6.55-12.5
Тонкомолотый лом периклазохромитовых изделий
Sуд=2500-3000 см2/г 7-11.5
Вода, В/Т (от массы сухих компонентов) 0.12-0.14

Исходные компоненты, входящие в состав сырьевой смеси для изготовления жаростойкого хромомагнезитового бетона с повышенной температурой начала деформации под нагрузкой 0.2 МПа, °C и термической стойкостью изделий, следующие: коллоидный полисиликат натрия силикатным модулем - 6.5, хромомагнезитовый заполнитель фракции 0,18-7 мм, тонкомолотые до удельной поверхности 2500-3000 см2/г, наполнители: хромомагнезит, лом периклазохромитовых изделий и вода - любая, кроме минеральных вод.

Коллоидный полисиликат натрия силикатным модулем 6.5 получали согласно пат. РФ 2124475, путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их в соотношении 1:1,6, перемешивания при 100°C, в течение 3,0 ч с последующей выдержкой не более 0,5 ч.

Способ изготовления хромомагнезитового жаростойкого бетона из указанного выше состава заключалось в том, что отдозированные сухие тонкомолотые компоненты с удельной поверхностью 2500-3000 см2/г для каждого состава, приведенные в табл. 1: хромомагнезит, лом периклазохромитовых изделий перемешивали с коллоидным полисиликатом натрия силикатным модулем 6.5 с добавлением воды (В/Т=0.12-0.14) в лабораторном высокоскоростном смесителе до получения однородной суспензии. После чего полученную суспензию совместно перемешивали с огнеупорным хромомагнезитовым заполнителем фракции 0,18-7 мм в лопастной лабораторной мешалке принудительного действия до получения однородной массы.

Из полученной массы изготавливали образцы различных составов для определения температуры деформации под нагрузкой 0,2 МПа (ГОСТ 20910-90), термостойкости (ГОСТ 20910-90) и водостойкости (Кразм) (Микульский В.Г. и др. Строительные материалы. - М.: Изд-во АСВ, 2004. - 536 с.).

Образцы изготавливали путем послойной трамбовки. Для формования бетона могут быть применены также другие методы и способы, например, формование путем вибрирования, вибропрессование, прессование (одноступенчатое и двухступенчатое в пресс-форме) и др.

Твердение отформованных образцов осуществляли в лабораторном сушильном шкафу по режиму: подъем температуры до 200°C в течение 1 ч, выдержка при этой температуре 2 ч до полного удаления воды.

Соотношения компонентов по предлагаемому и известному составам представлены в табл. 1.

Результаты испытаний известных и предлагаемых составов приведены в табл. 2.

Из приведенных данных в таблице 2 следует, что предлагаемый состав имеет более высокие показатели термостойкости, температуры начала деформации под нагрузкой 0.2 МПа и водостойкости.

Таким образом, жаростойкий бетон, полученный по вышеприведенному составу и способу с использованием в качестве связующего коллоидного нанодисперсного полисиликата натрия взамен наноразмерных частиц силикат-глыбы, показывает, увеличение силикатного модуля (SiO2/Na2O=6,5), т.е. повышение кремнеземистого составляющего SiO2, следовательно, снижение содержания легкоплавкого компонента Na2O, в результате чего термостойкость, температура начала деформации под нагрузкой 0,2 МПа и водостойкость жаростойкого бетона повышаются. Повышению этих показателей способствует также тонкомолотый наполнитель - лом периклазохромитовых изделий, так как он является высокоогнеупорным компонентом и обладает высокой твердостью, плотностью, инертностью.

Литература

1. Тотурбиев Б.Д. Строительные материалы на основе силикат-натриевых композиций. - М.: Стройиздат, 1988.

2. Патент РФ №2377218, Бюл. №36, 27.12.2009.

1. Состав для изготовления хромомагнезитового жаростойкого бетона, включающий связующее, хромомагнезитовый заполнитель, тонкомолотые наполнители и воду, отличающийся тем, что содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивания при 100°C, в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве тонкомолотого наполнителя - хромомагнезит и тонкомолотый лом периклазохромитовых изделий при следующем соотношении компонентов, мас.%:

Хромомагнезитовый заполнитель фракции 0,18-7 мм 60-80
Тонкомолотый хромомагнезит Sуд=2500-3000 см2 8-16
Коллоидный нанодисперсный полисиликат натрия 5-12.5
Тонкомолотый лом периклазохромитовых изделий
Sуд=2500-3000 см2 7-11.5
Вода из расчета В/Т 0.12-0.14

2. Способ изготовления хромомагнезитового жаростойкого бетона из состава по п. 1, заключающийся в том, что в предварительно изготовленный коллоидный полисиликат натрия с силикатным модулем 6.5, при одновременном перемешивании в высокоскоростном смесителе вводят тонкомолотые наполнители с удельной поверхностью 2500-3000 см2/г: хромомагнезит, лом периклазохромитовых изделий и воду из расчета В/Т=0.12-0.14 до получения однородной суспензии, которую перемешивают с огнеупорным хромомагнезитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, далее эту массу формуют путем послойной трамбовки, твердение массы осуществляется в процессе сушки по режиму: подъем температуры до 200°C в течение 1 ч, выдержка при этой температуре 2 ч до полного удаления воды.



 

Похожие патенты:
Изобретение относится к производству сухих строительных смесей с пониженным пылеобразованием за счет использования в качестве супрессивного средства изоляционного масла и может быть использовано в строительстве и промышленности строительных материалов для изготовления сухих строительных смесей (ССС), кладочных и штукатурных растворов, а также составов для устройства полов, стяжек, заделки стыков, щелей и т.п.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из самоуплотняющегося бетона.

Настоящее изобретение относится к области строительных материалов, а именно к изготовлению модифицированных строительных растворов, и может быть использовано при строительстве кирпичных зданий для кирпичной кладки, в том числе лицевой кладки стен, для которой актуально применение решений, предупреждающих образование высолов на поверхности стен.

Изобретение относится к технологии приготовления с добавками суперпластификаторов бетонных смесей, используемых преимущественно при бетонировании монолитных бетонных и железобетонных конструкций.

Настоящее изобретение относится к жидкой диспергирующей композиции для гипса, содержащей (A) особый сополимер поликарбоновой кислоты, особое азотсодержащее соединение, такое как особый алкиламин, и воду, и имеющей pH 7,0 или более и 13,0 или менее при 20°C, к гипсовой суспензии, содержащей указанную диспергирующую композицию, и к способу получения гипсовой суспензии, а также к применению указанной жидкой композиции в качестве диспергатора.

Группа изобретений относится к способу изготовления гипсосодержащего вспененного готового строительного материала и гипсосодержащему вспененному строительному материалу, изготовленному таким способом.

Настоящее изобретение относится к волокнистой плите. Волокнистая плита, включающая : а) волокна в количестве от 50,0 до 99,0 вес.ч.

Изобретение относится к технологиям переработки кислых зол ТЭС в заполнитель для бетонов конструкционного назначения. Способ получения безобжигового зольного гравия на основе кислой золы, негашеной извести и щелочного активизатора твердения включает измельчение, дозирование, перемешивание компонентов и увлажнение смеси, грануляцию и уплотнение гранул в уплотнителе, в процессе которого их опудривают вначале пластификатором С-3, а затем портландцементом М400Д0, с последующим твердением гранул в нормальных условиях, в качестве щелочного активизатора используют Na2SO4, для увлажнения смеси используют известковое молоко или его смесь с сульфатом натрия, совмещая при этом перемешивание компонентов смеси с гидромеханической активацией со скоростью 1000 оборотов вала в минуту длительностью 3 мин, затвердевшие гранулы подсушивают при температуре ниже 100°C до потери массы около 5%, а затем модифицируют помещением в водную эмульсию поливинилацетата, в которой их одновременно подвергают вакуумированию и вибрации.

Изобретение относится к области транспортного строительства и может быть использовано в качестве состава для устройства различных конструктивных слоев транспортных сооружений, в частности автомобильных дорог, например конструкций дорожного покрытия, откосов земляного полотна, укрепленных обочин, конусов насыпей мостовых сооружений, оснований дорог, оголовков водопропускных труб, парковок автомобильного транспорта, газонов, укрепленных щебнем, а также аэродромов, промышленных и строительных площадок.

Группа изобретений относится к гипсовым панелям с низкой массой и плотностью, с хорошими теплоизоляционными свойствами, хорошей стойкостью к термоусадке, хорошей огнестойкостью и, в некоторых аспектах настоящего изобретения, хорошей водостойкостью.

Изобретение относится к строительным материалам, в частности к составам строительных растворов и бетонов с высокой стойкостью к высолообразованию, используемых при производстве бетонных изделий и конструкций.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.

Изобретение относится к применению по меньшей мере одного содержащего азот органического соединения и/или его соли в комбинации с по меньшей мере одной ароматической карбоновой кислотой и/или ее солью для улучшения устойчивости при замерзании и оттаивании активированного щелочью алюмосиликатного вяжущего, а также к активированному щелочью алюмосиликатному вяжущему, содержащему ε-капролактам и бензоат натрия в качестве стабилизирующих веществ при замерзании и оттаивании.

Изобретение относится к области производства строительных материалов, конкретно к получению композиционных теплоизоляционных негорючих заполнителей, используемых в качестве негорючих утеплителей в различных конструкциях и элементах зданий и строительных сооружений.

Изобретение относится к производству конструкционно-теплоизоляционных материалов. В способе изготовления конструкционно-теплоизоляционного материала, включающем измельчение силикат-глыбы до удельной поверхности 2500 см2/г, смешивание ее с модификатором, упрочняющей добавкой - портлантцементом, базальтовой микрофиброй и водой затворения, помещение полученной смеси в форму, тепловую обработку токами СВЧ в течение 15 минут при температуре 300 град С, в качестве модификатора используют гидрофобизатор 136-41 при следующем соотношении компонентов смеси, мас.

Изобретение относится к производству смесей, которые могут быть использованы в качестве обмазочного материала в строительстве печей. Огнеупорная смесь содержит: жидкое калиевое стекло с плотностью 1300-1350 кг/м3 и силикатным модулем 3,6-4 и дополнительно - циркон, при следующем соотношении компонентов, мас.%: указанное жидкое стекло 38,0-41,0, каолин 4,0-6,0, стальное волокно длиной 5-10 мм 0,2-0,3, молотый до прохождения через сито №008 циркон 7,0-9,0, молотый до прохождения через сито №063 шамот - остальное.

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений.

Изобретение относится к строительным материалам и может быть использовано для футеровки обжиговых вагонеток и при строительстве печей. Технический результат заключается в повышении прочности бетона.
Изобретение относится к неорганическим сухим порошкообразным краскам для архитектурных покрытий. Предложена неорганическая сухая порошкообразная краска для архитектурных покрытий, содержащая силикат щелочного металла, отверждающее средство и органический повторно диспергируемый эмульсионный порошок, полученный сушкой эмульсии полимера.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления магнезитового жаростойкого бетона, включающий: связующее, магнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидные нанодисперсные полисиликаты натрия и тонкомолотые наполнители - лом периклазохромитовых изделий, шлам электрокорунда при следующем соотношении компонентов, мас.

Изобретение относится к изготовлению керамического материала высокой плотности на основе гексагонального нитрида бора (ГНБ), который имеет большие перспективы применения в авиационно-космической промышленности.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления хромомагнезитового жаростойкого бетона, включающий связующее, хромомагнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20-ный водный раствор силиката натрия 16-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивании при 100°C в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве тонкомолотого наполнителя – тонкомолотый хромомагнезит и тонкомолотый лом периклазохромитовых изделий при следующем соотношении компонентов, мас.: хромомагнезитовый заполнитель фракции 0,18-7 мм 60-80, тонкомолотый хромомагнезит Sуд2500-3000 см2г 8-16, коллоидный нанодисперсный полисиликат натрия 5-12.5, тонкомолотый лом периклазохромитовых изделий Sуд2500-3000 см2г 7-11.5, вода из расчета ВТ 0.12-0.14. Способ изготовления хромомагнезитового жаростойкого бетона из указанного выше состава, заключающийся в том, что в предварительно изготовленный коллоидный полисиликат натрия при одновременном перемешивании в высокоскоростном смесителе вводят указанные тонкомолотые наполнители и воду с получением однородной суспензии, которую перемешивают с хромомагнезитовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, далее эту массу формуют путем послойной трамбовки и твердение массы осуществляется в процессе сушки по режиму: подъем температуры до 200°C в течение 1 ч, выдержка при этой температуре 2 ч до полного удаления воды. Технический результат - повышение термо- и водостойкости. 2 н.п. ф–лы, 2 табл.

Наверх